Xiaofu Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8638214/publications.pdf Version: 2024-02-01

XIAOEU SUN

#	Article	IF	CITATIONS
1	Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 2019, 10, 3851.	5.8	288
2	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie - International Edition, 2016, 55, 6771-6775.	7.2	225
3	Highly efficient electrochemical reduction of CO ₂ to CH ₄ in an ionic liquid using a metal–organic framework cathode. Chemical Science, 2016, 7, 266-273.	3.7	225
4	Highly Efficient Electroreduction of CO ₂ to Methanol on Palladium–Copper Bimetallic Aerogels. Angewandte Chemie - International Edition, 2018, 57, 14149-14153.	7.2	222
5	Efficient Reduction of CO ₂ into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. Angewandte Chemie - International Edition, 2016, 55, 9012-9016.	7.2	202
6	MoP Nanoparticles Supported on Indiumâ€Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2018, 57, 2427-2431.	7.2	199
7	Very highly efficient reduction of CO ₂ to CH ₄ using metal-free N-doped carbon electrodes. Chemical Science, 2016, 7, 2883-2887.	3.7	183
8	Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity. Physical Chemistry Chemical Physics, 2012, 14, 12252.	1.3	175
9	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie - International Edition, 2020, 59, 16459-16464.	7.2	148
10	Atomic Indium Catalysts for Switching CO ₂ Electroreduction Products from Formate to CO. Journal of the American Chemical Society, 2021, 143, 6877-6885.	6.6	140
11	Boosting CO ₂ Electroreduction on N,Pâ€Coâ€doped Carbon Aerogels. Angewandte Chemie - International Edition, 2020, 59, 11123-11129.	7.2	138
12	Synthesis of Functional Nanomaterials in Ionic Liquids. Advanced Materials, 2016, 28, 1011-1030.	11.1	129
13	Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydrate Polymers, 2015, 117, 99-105.	5.1	119
14	Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO ₂ to CO. Chemical Science, 2018, 9, 483-487.	3.7	93
15	Design of a Cu(<scp>i</scp>)/C-doped boron nitride electrocatalyst for efficient conversion of CO ₂ into acetic acid. Green Chemistry, 2017, 19, 2086-2091.	4.6	91
16	Aqueous CO ₂ Reduction with High Efficiency Using α o(OH) ₂ ‣upported Atomic Ir Electrocatalysts. Angewandte Chemie - International Edition, 2019, 58, 4669-4673.	7.2	90
17	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie - International Edition, 2021, 60, 21979-21987.	7.2	90
18	Boosting CO ₂ Electroreduction over a Cadmium Singleâ€Atom Catalyst by Tuning of the Axial Coordination Structure. Angewandte Chemie - International Edition, 2021, 60, 20803-20810.	7.2	86

XIAOFU SUN

#	Article	IF	CITATIONS
19	Hollow Metal–Organicâ€Frameworkâ€Mediated Inâ€Situ Architecture of Copper Dendrites for Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 8896-8901.	7.2	85
20	In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nature Communications, 2022, 13, 1965.	5.8	84
21	Electrosynthesis of a Defective Indium Selenide with 3Dâ€Structure on a Substrate for Tunable CO ₂ Electroreduction to Syngas. Angewandte Chemie - International Edition, 2020, 59, 2354-2359.	7.2	79
22	Studies on staged precipitation of cellulose from an ionic liquid by compressed carbon dioxide. Green Chemistry, 2014, 16, 2736-2744.	4.6	73
23	Synthesis of Supported Ultrafine Nonâ€noble Subnanometerâ€Scale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2016, 55, 1080-1084.	7.2	69
24	Efficient electroreduction of CO ₂ to C2 products over B-doped oxide-derived copper. Green Chemistry, 2018, 20, 4579-4583.	4.6	68
25	Metal–organic framework-derived indium–copper bimetallic oxide catalysts for selective aqueous electroreduction of CO ₂ . Green Chemistry, 2019, 21, 503-508.	4.6	66
26	Hydrogen bonding interaction between acetate-based ionic liquid 1-ethyl-3-methylimidazolium acetate and common solvents. Journal of Molecular Liquids, 2014, 190, 151-158.	2.3	64
27	Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. National Science Review, 2022, 9, nwab022.	4.6	58
28	Efficient Reduction of CO ₂ into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. Angewandte Chemie, 2016, 128, 9158-9162.	1.6	56
29	Highly Efficient Electroreduction of CO ₂ to Methanol on Palladium–Copper Bimetallic Aerogels. Angewandte Chemie, 2018, 130, 14345-14349.	1.6	56
30	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie, 2016, 128, 6883-6887.	1.6	55
31	The dissolution behaviour of chitosan in acetate-based ionic liquids and their interactions: from experimental evidence to density functional theory analysis. RSC Advances, 2014, 4, 30282-30291.	1.7	53
32	A strategy to control the grain boundary density and Cu ⁺ /Cu ⁰ ratio of Cu-based catalysts for efficient electroreduction of CO ₂ to C2 products. Green Chemistry, 2020, 22, 1572-1576.	4.6	49
33	Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system. Science China Chemistry, 2016, 59, 551-556.	4.2	48
34	Enhanced CO ₂ electroreduction <i>via</i> interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnIn ₂ S ₄ hybrids. Chemical Science, 2019, 10, 1659-1663.	3.7	45
35	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multi arbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
36	MoP Nanoparticles Supported on Indiumâ€Đoped Porous Carbon: Outstanding Catalysts for Highly Efficient CO ₂ Electroreduction. Angewandte Chemie, 2018, 130, 2451-2455.	1.6	42

XIAOFU SUN

#	Article	IF	CITATIONS
37	Water Sorption in Amino Acid Ionic Liquids: Kinetic, Mechanism, and Correlations between Hygroscopicity and Solvatochromic Parameters. ACS Sustainable Chemistry and Engineering, 2014, 2, 138-148.	3.2	41
38	Precipitation of chitosan from ionic liquid solution by the compressed CO ₂ anti-solvent method. Green Chemistry, 2014, 16, 2102-2106.	4.6	40
39	The <i>in situ</i> study of surface species and structures of oxide-derived copper catalysts for electrochemical CO ₂ reduction. Chemical Science, 2021, 12, 5938-5943.	3.7	40
40	Metal–Organic Framework-Stabilized CO ₂ /Water Interfacial Route for Photocatalytic CO ₂ Conversion. ACS Applied Materials & Interfaces, 2017, 9, 41594-41598.	4.0	39
41	Boosting CO ₂ Electroreduction on N,Pâ€Coâ€doped Carbon Aerogels. Angewandte Chemie, 2020, 132, 11216-11222.	1.6	39
42	lonicity of acetate-based protic ionic liquids: evidence for both liquid and gaseous phases. New Journal of Chemistry, 2014, 38, 3449-3456.	1.4	38
43	Extraction of 5-HMF from the conversion of glucose in ionic liquid [Bmim]Cl by compressed carbon dioxide. Green Chemistry, 2015, 17, 2719-2722.	4.6	38
44	Boosting nitrate electroreduction to ammonia on NbO _{<i>x</i>} <i>via</i> constructing oxygen vacancies. Green Chemistry, 2022, 24, 1090-1095.	4.6	35
45	Electrochemical Transformation of CO ₂ to Value-Added Chemicals and Fuels. CCS Chemistry, 2022, 4, 3213-3229.	4.6	35
46	Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. Science China Chemistry, 2018, 61, 228-235.	4.2	33
47	Highly Selective CO ₂ Electroreduction to CO on Cu–Co Bimetallic Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12561-12567.	3.2	33
48	Nanoporous Cu/Ni oxide composites: efficient catalysts for electrochemical reduction of CO ₂ in aqueous electrolytes. Green Chemistry, 2018, 20, 3705-3710.	4.6	32
49	Electrosynthesis of a Defective Indium Selenide with 3Dâ€Structure on a Substrate for Tunable CO ₂ Electroreduction to Syngas. Angewandte Chemie, 2020, 132, 2374-2379.	1.6	32
50	Synthesis of Hierarchical Porous Metals Using Ionicâ€Liquidâ€Based Media as Solvent and Template. Angewandte Chemie - International Edition, 2017, 56, 12683-12686.	7.2	31
51	Gâ€quadruplex Nanowires To Direct the Efficiency and Selectivity of Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 12453-12457.	7.2	25
52	Theoretical studies on the dissolution of chitosan in 1-butyl-3-methylimidazolium acetate ionic liquid. Carbohydrate Research, 2015, 408, 107-113.	1.1	24
53	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie, 2020, 132, 16601-16606.	1.6	23
54	Synthesis of hierarchical mesoporous Prussian blue analogues in ionic liquid/water/MgCl ₂ and application in electrochemical reduction of CO ₂ . Green Chemistry, 2016, 18, 1869-1873.	4.6	22

XIAOFU SUN

#	Article	IF	CITATIONS
55	Aqueous CO ₂ Reduction with High Efficiency Using α o(OH) ₂ â€Supported Atomic Ir Electrocatalysts. Angewandte Chemie, 2019, 131, 4717-4721.	1.6	20
56	An Environmentally Benign Cycle To Regenerate Chitosan and Capture Carbon Dioxide by Ionic Liquids. Energy & Fuels, 2015, 29, 1923-1930.	2.5	19
57	N,N-Dimethylation of nitrobenzenes with CO ₂ and water by electrocatalysis. Chemical Science, 2017, 8, 5669-5674.	3.7	19
58	Hollow Metal–Organicâ€Frameworkâ€Mediated Inâ€Situ Architecture of Copper Dendrites for Enhanced CO 2 Electroreduction. Angewandte Chemie, 2020, 132, 8981-8986.	1.6	19
59	CO ₂ as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids. Chemical Communications, 2015, 51, 10811-10814.	2.2	18
60	Boosting CO ₂ electroreduction over Co nanoparticles supported on N,B-co-doped graphitic carbon. Green Chemistry, 2022, 24, 1488-1493.	4.6	18
61	Boosting CO ₂ Electroreduction over a Cadmium Singleâ€Atom Catalyst by Tuning of the Axial Coordination Structure. Angewandte Chemie, 2021, 133, 20971-20978.	1.6	16
62	Synthesis of Supported Ultrafine Nonâ€noble Subnanometerâ€6cale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie, 2016, 128, 1092-1096.	1.6	15
63	Synthesis of Sn ₄ P ₃ /reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO ₂ reduction. Green Chemistry, 2020, 22, 6804-6808.	4.6	14
64	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie, 2021, 133, 22150-22158.	1.6	11
65	Efficient and Sustainable Strategy for the Hierarchical Separation of Lignin-Based Compounds Using Ionic Liquid/Compressed CO2. Energy & Fuels, 2015, 29, 2564-2570.	2.5	10
66	Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO ₂ reduction with high efficiency. Chemical Science, 2021, 12, 11914-11920.	3.7	10
67	Quantification of Ionic Liquids Concentration in Water and Qualification of Conjugated and Inductive Effects of Ionic Liquids by <scp>UV</scp> Spectroscopy. Clean - Soil, Air, Water, 2014, 42, 1162-1169.	0.7	8
68	Towards sustainable CO2 electrochemical transformation via coupling design strategy. Materials Today Sustainability, 2022, 19, 100179.	1.9	8
69	Rational design of nanocatalysts for ambient ammonia electrosynthesis. Pure and Applied Chemistry, 2021, 93, 777-797.	0.9	7
70	Synthesis of hierarchical porous β-FeOOH catalysts in ionic liquid/water/CH2Cl2 ionogels. Chemical Communications, 2016, 52, 4687-4690.	2.2	6
71	Ultrathin and Porous Carbon Nanosheets Supporting Bimetallic Nanoparticles for Highâ€Performance Electrocatalysis. ChemCatChem, 2018, 10, 1241-1247.	1.8	3
72	Gâ€quadruplex Nanowires To Direct the Efficiency and Selectivity of Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 12633-12637.	1.6	3

#	Article	IF	CITATIONS
73	Synthesis of Hierarchical Porous Metals Using Ionicâ€Liquidâ€Based Media as Solvent and Template. Angewandte Chemie, 2017, 129, 12857-12860.	1.6	0
74	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multiâ€Carbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie, 0, , .	1.6	0