Arnaud Duchon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8638056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-influential genetic interactions alter behaviour and cognition through six main biological cascades in Down syndrome mouse models. Human Molecular Genetics, 2021, 30, 771-788.	2.9	24
2	Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes, 2021, 12, 1833.	2.4	28
3	Longâ€lasting correction of in vivo LTP and cognitive deficits of mice modelling Down syndrome with an α5â€selective GABA _A inverse agonist. British Journal of Pharmacology, 2020, 177, 1106-1118.	5.4	27
4	A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Scientific Reports, 2020, 10, 1143.	3.3	21
5	TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis. Nature Communications, 2019, 10, 2129.	12.8	17
6	Prenatal treatment with EGCG enriched green tea extract rescues GAD67 related developmental and cognitive defects in Down syndrome mouse models. Scientific Reports, 2019, 9, 3914.	3.3	35
7	Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	55
8	DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Frontiers in Behavioral Neuroscience, 2016, 10, 104.	2.0	142
9	Pharmacological correction of excitation/inhibition imbalance in Down syndrome mouse models. Frontiers in Behavioral Neuroscience, 2015, 9, 267.	2.0	57
10	Dosage of the Abcg1-U2af1 Region Modifies Locomotor and Cognitive Deficits Observed in the Tc1 Mouse Model of Down Syndrome. PLoS ONE, 2015, 10, e0115302.	2.5	16
11	Deletion of the <i>App-Runx1</i> region in mice models human partial monosomy 21. DMM Disease Models and Mechanisms, 2015, 8, 623-634.	2.4	12
12	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
13	Opposite Phenotypes of Muscle Strength and Locomotor Function in Mouse Models of Partial Trisomy and Monosomy 21 for the Proximal Hspa13-App Region. PLoS Genetics, 2015, 11, e1005062.	3.5	39
14	Epigallocatechinâ€3â€gallate, a DYRK1A inhibitor, rescues cognitive deficits in <scp>D</scp> own syndrome mouse models and in humans. Molecular Nutrition and Food Research, 2014, 58, 278-288.	3.3	234
15	Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiology of Disease, 2014, 69, 65-75.	4.4	104
16	DYRK1A overexpression decreases plasma lecithin:cholesterol acyltransferase activity and apolipoprotein A-I levels. Molecular Genetics and Metabolism, 2013, 110, 371-377.	1.1	5
17	The App-Runx1 Region Is Critical for Birth Defects and Electrocardiographic Dysfunctions Observed in a Down Syndrome Mouse Model. PLoS Genetics, 2012, 8, e1002724.	3.5	25
18	The in vivo Down syndrome genomic library in mouse. Progress in Brain Research, 2012, 197, 169-197.	1.4	33

ARNAUD DUCHON

#	Article	IF	CITATIONS
19	The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome. Behavioural Brain Research, 2011, 217, 271-281.	2.2	34
20	Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling down syndrome. Mammalian Genome, 2011, 22, 674-684.	2.2	186
21	Chronic Treatment with a Promnesiant GABA-A -Selective Inverse Agonist Increases Immediate Early Genes Expression during Memory Processing in Mice and Rectifies Their Expression Levels in a Down Syndrome Mouse Model. Advances in Pharmacological Sciences, 2011, 2011, 1-11.	3.7	51
22	Specific targeting of the GABA-A receptor $\hat{1}\pm 5$ subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. Journal of Psychopharmacology, 2011, 25, 1030-1042.	4.0	153
23	Controlled Somatic and Germline Copy Number Variation in the Mouse Model. Current Genomics, 2010, 11, 470-480.	1.6	3
24	A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Human Molecular Genetics, 2009, 18, 4756-4769.	2.9	101
25	DYRK1A, a Novel Determinant of the Methionine-Homocysteine Cycle in Different Mouse Models Overexpressing this Down-Syndrome-Associated Kinase. PLoS ONE, 2009, 4, e7540.	2.5	50
26	Inducing Segmental Aneuploid Mosaicism in the Mouse Through Targeted Asymmetric Sister Chromatid Event of Recombination. Genetics, 2008, 180, 51-59.	2.9	17
27	Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Human Molecular Genetics, 2007, 16, 2040-2052.	2.9	30
28	Modeling Chromosomes in Mouse to Explore the Function of Genes, Genomic Disorders, and Chromosomal Organization. PLoS Genetics, 2006, 2, e86.	3.5	38