Lie-Fen Shyur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8637902/publications.pdf

Version: 2024-02-01

99 4,225 33 62
papers citations h-index g-index

103 103 103 5669 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. Journal of Medicinal Chemistry, 2007, 50, 4087-4095.	2.9	460
2	Antioxidant Activity of Extracts fromAcacia confusaBark and Heartwood. Journal of Agricultural and Food Chemistry, 2001, 49, 3420-3424.	2.4	380
3	Metabolomics for phytomedicine research and drug development. Current Opinion in Chemical Biology, 2008, 12, 66-71.	2.8	147
4	Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. Journal of Ethnopharmacology, 2004, 95, 409-419.	2.0	144
5	Ethyl caffeate suppresses NF- \hat{l}^2 B activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. British Journal of Pharmacology, 2005, 146, 352-363.	2.7	144
6	Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. Journal of Traditional and Complementary Medicine, 2011, 1, 41-50.	1.5	130
7	Shikonins, Phytocompounds from Lithospermum erythrorhizon, Inhibit the Transcriptional Activation of Human Tumor Necrosis Factor $\hat{l}\pm$ Promoter in Vivo. Journal of Biological Chemistry, 2004, 279, 5877-5885.	1.6	127
8	Pu-erh tea polysaccharides decrease blood sugar by inhibition of \hat{l}_{\pm} -glucosidase activity in vitro and in mice. Food and Function, 2015, 6, 1539-1546.	2.1	109
9	Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. British Journal of Pharmacology, 2010, 159, 856-871.	2.7	85
10	Antioxidant Properties and Phytochemical Characteristics of Extracts fromLactuca indica. Journal of Agricultural and Food Chemistry, 2003, 51, 1506-1512.	2.4	82
11	Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-22.	1.9	81
12	Biological Degradation of Anthroquinone and Azo Dyes by a Novel Laccase from <i>Lentinus</i> sp Environmental Science & Envi	4.6	78
13	Polyacetylenic Compounds and Butanol Fraction fromBidens pilosacan Modulate the Differentiation of Helper T Cells and Prevent Autoimmune Diabetes in Non-Obese Diabetic Mice. Planta Medica, 2004, 70, 1045-1051.	0.7	77
14	Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN- \hat{l}^3 expression. Journal of Ethnopharmacology, 2007, 112, 232-236.	2.0	77
15	Profiling and Characterization Antioxidant Activities inAnoectochilus formosanusHayata. Journal of Agricultural and Food Chemistry, 2002, 50, 1859-1865.	2.4	73
16	Phenolic Antioxidants from the Heartwood of Acacia confusa. Journal of Agricultural and Food Chemistry, 2005, 53, 5917-5921.	2.4	73
17	A Galactolipid Possesses Novel Cancer Chemopreventive Effects by Suppressing Inflammatory Mediators and Mouse B16 Melanoma. Cancer Research, 2007, 67, 6907-6915.	0.4	73
18	Phytomedicine—Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacological Research, 2016, 114, 128-143.	3.1	71

#	Article	IF	Citations
19	Structural and Functional Roles of Glycosylation in Fungal Laccase from Lentinus sp PLoS ONE, 2015, 10, e0120601.	1.1	67
20	A Truncated Fibrobacter succinogenes $1,3\hat{a}^3,4\hat{l}^2$ -d-Glucanase with Improved Enzymatic Activity and Thermotolerance. Biochemistry, 2005, 44, 9197-9205.	1.2	63
21	Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator. Journal of Ethnopharmacology, 2007, 110, 532-538.	2.0	62
22	Chemical composition and antifungal activity of essential oil isolated from Chamaecyparis formosensis Matsum. wood. Holzforschung, 2005, 59, 295-299.	0.9	58
23	Comparative metabolomics approach coupled with cell- and gene-based assays for species classification and anti-inflammatory bioactivity validation of Echinacea plants. Journal of Nutritional Biochemistry, 2010, 21, 1045-1059.	1.9	57
24	Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Scientific Reports, 2017, 7, 9291.	1.6	53
25	Modulatory effects of Echinacea purpurea extracts on human dendritic cells: A cell- and gene-based study. Genomics, 2006, 88, 801-808.	1.3	52
26	Crystal Structure of a Natural Circularly Permuted Jellyroll Protein: 1,3-1,4-Î ² -d-Glucanase from Fibrobacter succinogenes. Journal of Molecular Biology, 2003, 330, 607-620.	2.0	51
27	Effect of Phytocompounds from the Heartwood of Acacia confusa on Inflammatory Mediator Production. Journal of Agricultural and Food Chemistry, 2008, 56, 1567-1573.	2.4	51
28	Hepatoprotective effect and mechanistic insights of deoxyelephantopin, a phyto-sesquiterpene lactone, against fulminant hepatitis. Journal of Nutritional Biochemistry, 2013, 24, 516-530.	1.9	48
29	Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells. BMC Genomics, 2008, 9, 479.	1.2	46
30	Phytomedicine polypharmacology: Cancer therapy through modulating the tumor microenvironment and oxylipin dynamics., 2016, 162, 58-68.		46
31	Polyacetylenes Function as Anti-Angiogenic Agents. Pharmaceutical Research, 2004, 21, 2112-2119.	1.7	45
32	Hepatoprotective phytocompounds from Cryptomeria japonica are potent modulators of inflammatory mediators. Phytochemistry, 2008, 69, 1348-1358.	1.4	45
33	The distinct effects of a butanol fraction of Bidens pilosa plant extract on the development of Th1-mediated diabetes and Th2-mediated airway inflammation in mice. Journal of Biomedical Science, 2005, 12, 79-89.	2.6	39
34	Induction of Apoptosis in MCF-7 Human Breast Cancer Cells by Phytochemicals from <i>Anoectochilus formosanus</i> . Journal of Biomedical Science, 2004, 11, 928-939.	2.6	38
35	Herbal Medicine and Acupuncture for Breast Cancer Palliative Care and Adjuvant Therapy. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-17.	0.5	38
36	Deregulating the CYP2C19/Epoxy-Eicosatrienoic Acid-Associated FABP4/FABP5 Signaling Network as a Therapeutic Approach for Metastatic Triple-Negative Breast Cancer. Cancers, 2020, 12, 199.	1.7	38

#	Article	IF	Citations
37	Crystal Structures of the Laminarinase Catalytic Domain from Thermotoga maritima MSB8 in Complex with Inhibitors. Journal of Biological Chemistry, 2011, 286, 45030-45040.	1.6	35
38	Differential Proteomic Profiling Identifies Novel Molecular Targets of Paclitaxel and Phytoagent Deoxyelephantopin against Mammary Adenocarcinoma Cells. Journal of Proteome Research, 2010, 9, 237-253.	1.8	34
39	Deoxyelephantopin impedes mammary adenocarcinoma cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and aggresome formation. Free Radical Biology and Medicine, 2012, 52, 1423-1436.	1.3	32
40	Effects of Chamaecyparis formosensis Matasumura extractives on lipopolysaccharide-induced release of nitric oxide. Phytomedicine, 2007, 14, 675-680.	2.3	31
41	Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells. Phytomedicine, 2016, 23, 1535-1544.	2.3	31
42	Novel sesquiterpene lactone analogues as potent antiâ€breast cancer agents. Molecular Oncology, 2016, 10, 921-937.	2.1	30
43	Taiwanin A inhibits MCF-7 cancer cell activity through induction of oxidative stress, upregulation of DNA damage checkpoint kinases, and activation of p53 and FasL/Fas signaling pathways. Phytomedicine, 2010, 18, 16-24.	2.3	29
44	Crystal Structure of Truncated Fibrobacter succinogenes 1,3-1,4- \hat{l}^2 -d-Glucanase in Complex with \hat{l}^2 -1,3-1,4-Cellotriose. Journal of Molecular Biology, 2005, 354, 642-651.	2.0	27
45	A Novel Diterpene Suppresses CWR22Rv1 Tumor Growth <i>In vivo</i> through Antiproliferation and Proapoptosis. Cancer Research, 2008, 68, 6634-6642.	0.4	27
46	Echinacea Alkamides Prevent Lipopolysaccharide/ <scp>d</scp> -Galactosamine- Induced Acute Hepatic Injury through JNK Pathway-Mediated HO-1 Expression. Journal of Agricultural and Food Chemistry, 2011, 59, 11966-11974.	2.4	27
47	Silibinin and Paclitaxel Cotreatment Significantly Suppress the Activity and Lung Metastasis of Triple Negative 4T1 Mammary Tumor Cell in Mice. Journal of Traditional and Complementary Medicine, 2012, 2, 301-311.	1.5	27
48	Biochemical characterization of a novel laccase from the basidiomycete fungus Cerrena sp. WR1. Protein Engineering, Design and Selection, 2012, 25, 761-769.	1.0	27
49	Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death. Oncotarget, 2017, 8, 56942-56958.	0.8	27
50	Immunomodulatory effects of phytocompounds characterized by inÂvivo transgenic human GM-CSF promoter activity in skin tissues. Journal of Biomedical Science, 2008, 15, 813-822.	2.6	26
51	Phytoagent Deoxyelephantopin and Its Derivative Inhibit Triple Negative Breast Cancer Cell Activity through ROS-Mediated Exosomal Activity and Protein Functions. Frontiers in Pharmacology, 2017, 8, 398.	1.6	23
52	Association of Arachidonic Acid-derived Lipid Mediators with Subsequent Onset of Acute Myocardial Infarction in Patients with Coronary Artery Disease. Scientific Reports, 2020, 10, 8105.	1.6	23
53	A Novel Polyacetylene Significantly Inhibits Angiogenesis and Promotes Apoptosis in Human Endothelial Cells through Activation of the CDK Inhibitors and Caspase-7. Planta Medica, 2007, 73, 655-661.	0.7	22
54	Current Research and Development of Chemotherapeutic Agents for Melanoma. Cancers, 2010, 2, 397-419.	1.7	22

#	Article	IF	Citations
55	Mammalian target of rapamycin complex 2 (mTORC2) regulates LPS-induced expression of IL-12 and IL-23 in human dendritic cells. Journal of Leukocyte Biology, 2015, 97, 1071-1080.	1.5	22
56	Directed Mutagenesis of Specific Active Site Residues onFibrobacter succinogenes1,3–1,4-β-d-Glucanase Significantly Affects Catalysis and Enzyme Structural Stability. Journal of Biological Chemistry, 2001, 276, 17895-17901.	1.6	21
57	Medicinal herb extract and a single-compound drug confer similar complex pharmacogenomic activities in MCF-7 cells. Journal of Biomedical Science, 2004, 11, 418-422.	2.6	21
58	Dual specificity phosphatase DUSP 6 promotes endothelial inflammation through inducible expression of ICAM $\hat{a}\in \mathbb{R}$. FEBS Journal, 2018, 285, 1593-1610.	2.2	20
59	A Novel Plant Sesquiterpene Lactone Derivative, DETD-35, Suppresses BRAFV600E Mutant Melanoma Growth and Overcomes Acquired Vemurafenib Resistance in Mice. Molecular Cancer Therapeutics, 2016, 15, 1163-1176.	1.9	19
60	Mutagenesis of Trp54 and Trp203 Residues on Fibrobacter Succinogenes 1,3 \hat{a} °1,4- \hat{l}^2 -d-Glucanase Significantly Affects Catalytic Activities of the Enzyme. Biochemistry, 2002, 41, 8759-8766.	1.2	18
61	Simvastatin and a Plant Galactolipid Protect Animals from Septic Shock by Regulating Oxylipin Mediator Dynamics through the MAPK-cPLA2 Signaling Pathway. Molecular Medicine, 2015, 21, 988-1001.	1.9	18
62	Phyto-sesquiterpene lactone deoxyelephantopin and cisplatin synergistically suppress lung metastasis of B16 melanoma in mice with reduced nephrotoxicity. Phytomedicine, 2019, 56, 194-206.	2.3	18
63	Medicinal herb extract and a single-compound drug confer similar complex pharmacogenomic activities in mcf-7 cells. Journal of Biomedical Science, 2004, 11, 418-22.	2.6	17
64	<i>Dioscorea</i> Phytocompounds Enhance Murine Splenocyte Proliferation <i>Ex Vivo</i> and Improve Regeneration of Bone Marrow Cells <i>In Vivo</i> Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-11.	0.5	16
65	New alkaloids from Formosan zoanthid Zoanthus kuroshio. Tetrahedron, 2015, 71, 8601-8606.	1.0	16
66	Integrated omics-based pathway analyses uncover CYP epoxygenase-associated networks as theranostic targets for metastatic triple negative breast cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 187.	3.5	16
67	Phyto-sesquiterpene lactones DET and DETD-35 induce ferroptosis in vemurafenib sensitive and resistant melanoma via GPX4 inhibition and metabolic reprogramming. Pharmacological Research, 2022, 178, 106148.	3.1	16
68	A sesquiterpenol extract potently suppresses inflammation in macrophages and mice skin and prevents chronic liver damage in mice through JNK-dependent HO-1 expression. Phytochemistry, 2011, 72, 391-399.	1.4	13
69	Novel effect and the mechanistic insights of fruiting body extract of medicinal fungus Antrodia cinnamomea against T47D breast cancer. Phytomedicine, 2017, 24, 39-48.	2.3	13
70	Plant galactolipid dLGG suppresses lung metastasis of melanoma through deregulating TNFâ€Î±â€mediated pulmonary vascular permeability and circulating oxylipin dynamics in mice. International Journal of Cancer, 2018, 143, 3248-3261.	2.3	13
71	A Plant Kavalactone Desmethoxyyangonin Prevents Inflammation and Fulminant Hepatitis in Mice. PLoS ONE, 2013, 8, e77626.	1.1	12
72	Sesquiterpene Lactone Deoxyelephantopin Isolated from Elephantopus scaber and Its Derivative DETD-35 Suppress BRAFV600E Mutant Melanoma Lung Metastasis in Mice. International Journal of Molecular Sciences, 2021, 22, 3226.	1.8	12

#	Article	IF	CITATIONS
73	White sweet potato ameliorates hyperglycemia and regenerates pancreatic islets in diabetic mice. Food and Nutrition Research, 2020, 64, .	1.2	12
74	Engineering of dual-functional hybrid glucanases. Protein Engineering, Design and Selection, 2012, 25, 771-780.	1.0	10
75	Structural modeling of glucanase–substrate complexes suggests a conserved tyrosine is involved in carbohydrate recognition in plant 1,3-1,4-β-d-glucanases. Journal of Computer-Aided Molecular Design, 2008, 22, 915-923.	1.3	9
76	Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 13571.	1.8	8
77	Essential Oil of Mentha aquatica var. Kenting Water Mint Suppresses Two-Stage Skin Carcinogenesis Accelerated by BRAF Inhibitor Vemurafenib. Molecules, 2019, 24, 2344.	1.7	7
78	Extract of white sweet potato tuber against TNF- \hat{l} ±-induced insulin resistance by activating the PI3K/Akt pathway in C2C12 myotubes., 2021, 62, 7.		7
79	Induction of apoptosis in MCF-7 human breast cancer cells by phytochemicals fromAnoectochilus formosanus. Journal of Biomedical Science, 2004, 11, 928-939.	2.6	6
80	Structural and catalytic roles of residues located in $\hat{1}^213$ strand and the following $\hat{1}^2$ -turn loop in Fibrobacter succinogenes 1,3-1,4- $\hat{1}^2$ -d-glucanase. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 231-239.	1.1	5
81	Structural and catalytic roles of amino acid residues located at substrateâ€binding pocket in ⟨i>Fibrobacter succinogenes⟨ i>1,3â€"1,4â€Î²â€ <scp>D< scp>â€glucanase. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2820-2830.</scp>	1.5	5
82	Recombinant viral protein VP1 suppresses HER-2 expression and migration/metastasis of breast cancer. Breast Cancer Research and Treatment, 2012, 136, 89-105.	1.1	5
83	Taxol, Camptothecin and Beyond for Cancer Therapy. Advances in Botanical Research, 2012, , 133-178.	0.5	5
84	Cumingianoside A, a Phyto-Triterpenoid Saponin Inhibits Acquired BRAF Inhibitor Resistant Melanoma Growth via Programmed Cell Death. Frontiers in Pharmacology, 2019, 10, 30.	1.6	5
85	Mutational and structural studies of the active-site residues in truncatedFibrobacter succinogenes1,3–1,4-β-D-glucanase. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 1259-1266.	2.5	4
86	Structural basis for the inhibition of 1,3-1,4- \hat{l}^2 -d-glucanase by noncompetitive calcium ion and competitive Tris inhibitors. Biochemical and Biophysical Research Communications, 2011, 407, 593-598.	1.0	4
87	Elucidation of enzymes involved in the biosynthetic pathway of bioactive polyacetylenes in Bidens pilosa using integrated omics approaches. Journal of Experimental Botany, 2021, 72, 525-541.	2.4	4
88	Phytogalactolipid dLGG Inhibits Mouse Melanoma Brain Metastasis through Regulating Oxylipin Activity and Re-Programming Macrophage Polarity in the Tumor Microenvironment. Cancers, 2021, 13, 4120.	1.7	4
89	An Overview of the Current Development of Phytoremedies for Breast Cancer. Evidence-based Anticancer Complementary and Alternative Medicine, 2012, , 47-67.	0.1	3
90	Transformation and Characterization of Î"12-Fatty Acid Acetylenase and Î"12-Oleate Desaturase Potentially Involved in the Polyacetylene Biosynthetic Pathway from Bidens pilosa. Plants, 2020, 9, 1483.	1.6	3

#	Article	IF	CITATIONS
91	Mechanistic Study of the Phytocompound, $2-\langle i \rangle^2 \langle j \rangle$ -Clucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne in Human T-Cell Acute Lymphocytic Leukemia Cells by Using Combined Differential Proteomics and Bioinformatics Approaches. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	0.5	2
92	MicroRNA-Mediated Mitochondrial Dysfunction Is Involved in the Anti-triple-Negative Breast Cancer Cell Activity of Phytosesquiterpene Lactones. Antioxidants and Redox Signaling, 2023, 38, 198-214.	2.5	1
93	Optical imaging of molecular targets of phytoagent deoxyelephantopin against mammary adenocarcinoma cell activities. FASEB Journal, 2013, 27, 663.1.	0.2	0
94	The role of protein glycosylation in laccases from Lentinus sp FASEB Journal, 2013, 27, 561.9.	0.2	0
95	Abstract B175: A novel plant sesquiterpene lactone derivative DETD suppresses BRAFV600E mutant melanoma growth and overcomes acquired vemurafenib resistance in mice. , 2015, , .		0
96	Abstract All1: Plant galactolipid dLGG suppresses lung metastasis of melanoma through modulating endothelial-mesenchymal transition extravasation and oxylipins dynamics. , 2015, , .		0
97	Abstract A74: Modulation of oxidative stress and exosome activity by phytoagent deoxyelephantopin (DET) and its derivative treatment in suppressing triple negative breast cancer cell functions., 2015,,.		0
98	Cellular and Molecular Signaling as Targets for Cancer Vaccine Therapeutics. Cells, 2022, 11, 1590.	1.8	0
99	Identification of Serum Oxylipins Associated with the Development of Coronary Artery Disease: A Nested Case-Control Study. Metabolites, 2022, 12, 495.	1.3	0