
Lei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8637801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carboxymethyl cellulose-based water barrier coating regulated postharvest quality and ROS metabolism of pakchoi (Brassica chinensis L.). Postharvest Biology and Technology, 2022, 185, 111804.	6.0	24
2	Comparing the effect of benzoic acid and cinnamic acid hydroxyl derivatives on polyphenol oxidase: activity, action mechanism, and molecular docking. Journal of the Science of Food and Agriculture, 2022, 102, 3771-3780.	3.5	8
3	Physicochemical, structural, and functional properties of protein fractions and protein isolate from jackfruit seeds. Journal of Food Science, 2022, 87, 1540-1551.	3.1	5
4	Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. LWT - Food Science and Technology, 2022, 162, 113513.	5.2	16
5	Effects of Microporous Packaging Combined with Chitosan Coating on the Quality and Physiological Metabolism of Passion Fruit after Harvest. Food and Bioprocess Technology, 2022, 15, 1836-1850.	4.7	8
6	Polyphenol oxidase inhibited by 4-hydroxycinnamic acid and naringenin: Multi-spectroscopic analyses and molecular docking simulation at different pH. Food Chemistry, 2022, 396, 133662.	8.2	13
7	A new site-specific monoPEGylated β-lactoglobulin at the N-terminal: Effect of different molecular weights of mPEG on its conformation and antigenicity. Food Chemistry, 2021, 343, 128402.	8.2	4
8	Carboxymethyl chitosan-pullulan edible films enriched with galangal essential oil: Characterization and application in mango preservation. Carbohydrate Polymers, 2021, 256, 117579.	10.2	129
9	An insight into heat-induced gelation of whey protein isolate–lactose mixed and conjugate solutions: rheological behavior, microstructure, and molecular forces. European Food Research and Technology, 2021, 247, 1711-1724.	3.3	9
10	Inhibitory mechanism of salicylic acid on polyphenol oxidase: A cooperation between acidification and binding effects. Food Chemistry, 2021, 348, 129100.	8.2	18
11	Thermal Inactivation Kinetics of Kudzu (Pueraria lobata) Polyphenol Oxidase and the Influence of Food Constituents. Foods, 2021, 10, 1320.	4.3	8
12	Anti-browning effect of Rosa roxburghii on apple juice and identification of polyphenol oxidase inhibitors. Food Chemistry, 2021, 359, 129855.	8.2	32
13	Effect of Galangal Essential Oil Emulsion on Quality Attributes of Cloudy Pineapple Juice. Frontiers in Nutrition, 2021, 8, 751405.	3.7	1
14	Effect of Chitosan Coatings with Cinnamon Essential Oil on Postharvest Quality of Mangoes. Foods, 2021, 10, 3003.	4.3	28
15	Differential inhibitory effects of organic acids on pear polyphenol oxidase in model systems and pear puree. LWT - Food Science and Technology, 2020, 118, 108704.	5.2	16
16	Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels. Food Chemistry, 2020, 303, 125401.	8.2	64
17	Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Critical Reviews in Food Science and Nutrition, 2020, 60, 3594-3621.	10.3	42
18	Effect of Cinnamon Essential Oil Nanoemulsion Combined with Ascorbic Acid on Enzymatic Browning of Cloudy Apple Juice. Food and Bioprocess Technology, 2020, 13, 860-870.	4.7	48

Lei Zhou

#	Article	IF	CITATIONS
19	Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment. Food and Bioprocess Technology, 2019, 12, 1907-1916.	4.7	6
20	Site specific PEGylation of \hat{l}^2 -lactoglobulin at glutamine residues and its influence on conformation and antigenicity. Food Research International, 2019, 123, 623-630.	6.2	10
21	Comparison of antigenicity and conformational changes to β-lactoglobulin following kestose glycation reaction with and without dynamic high-pressure microfluidization treatment. Food Chemistry, 2019, 278, 491-496.	8.2	8
22	Antigenicity of β-lactoglobulin reduced by combining with oleic acid during dynamic high-pressure microfluidization: Multi-spectroscopy and molecule dynamics simulation analysis. Journal of Dairy Science, 2019, 102, 145-154.	3.4	14
23	The enhancement of gastrointestinal digestibility of βâ€⊾G by dynamic highâ€pressure microfluidization to reduce its antigenicity. International Journal of Food Science and Technology, 2019, 54, 1677-1683.	2.7	10
24	The Inactivation Kinetics of Soluble and Membrane-Bound Polyphenol Oxidase in Pear during Thermal and High-Pressure Processing. Food and Bioprocess Technology, 2018, 11, 1039-1049.	4.7	27
25	Effect of citric acid and high pressure thermal processing on enzyme activity and related quality attributes of pear puree. Innovative Food Science and Emerging Technologies, 2018, 45, 196-207.	5.6	31
26	Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase. Food Chemistry, 2017, 234, 445-454.	8.2	29
27	Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment. Food Chemistry, 2017, 214, 423-431.	8.2	44
28	Mushroom (Agaricus bisporus) polyphenoloxidase inhibited by apigenin: Multi-spectroscopic analyses and computational docking simulation. Food Chemistry, 2016, 203, 430-439.	8.2	88
29	Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase. Enzyme and Microbial Technology, 2016, 90, 61-68.	3.2	28
30	Different modes of inhibition for organic acids on polyphenoloxidase. Food Chemistry, 2016, 199, 439-446.	8.2	61