
Abdelrahman Y Fouda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8637688/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Preclinical investigation of Pegylated arginase 1 as a treatment for retina and brain injury. Experimental Neurology, 2022, 348, 113923.	2.0	10
2	Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nature Cell Biology, 2022, 24, 35-50.	4.6	53
3	Modulation of TREM-1, Arginase and Nitric Oxide Levels under Diabetic Conditions in Macrophages. Metabolism: Clinical and Experimental, 2022, 128, 155024.	1.5	0
4	Investigation of Retinal Metabolic Function in Type 1 Diabetic Akita Mice. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	7
5	Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke. Neurochemistry International, 2022, 158, 105375.	1.9	2
6	Deletion of arginase 2 attenuates neuroinflammation in an experimental model of optic neuritis. PLoS ONE, 2021, 16, e0247901.	1.1	8
7	Endothelial arginase 2 mediates retinal ischemia/reperfusion injury by inducing mitochondrial dysfunction. Molecular Metabolism, 2021, 53, 101273.	3.0	17
8	Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy?. Journal of Clinical Medicine, 2020, 9, 425.	1.0	17
9	Role of Arginase 2 in Murine Retinopathy Associated with Western Diet-Induced Obesity. Journal of Clinical Medicine, 2020, 9, 317.	1.0	14
10	Utility of LysM-cre and Cdh5-cre Driver Mice in Retinal and Brain Research: An Imaging Study Using tdTomato Reporter Mouse. , 2020, 61, 51.		14
11	Arginase Pathway in Acute Retina and Brain Injury: Therapeutic Opportunities and Unexplored Avenues. Frontiers in Pharmacology, 2020, 11, 277.	1.6	22
12	Advanced Glycated End Products or High Glucose/Palmitate treatment modulate TREMâ€1, Arginase and Nitric Oxide Levels in Macrophages FASEB Journal, 2020, 34, 1-1.	0.2	0
13	Introducing the Zoom interview: tips for job hunting during the coronavirus pandemic. Nature, 2020, 582, 299-300.	13.7	5
14	Critical role of arginase 2 in obesityâ€induced metabolic dysregulation in female mice: Implication of macrophage inflammatory response. FASEB Journal, 2020, 34, 1-1.	0.2	0
15	Deletion of Arginase 2 Ameliorates Retinal Neurodegeneration in a Mouse Model of Multiple Sclerosis. Molecular Neurobiology, 2019, 56, 8589-8602.	1.9	12
16	Angiotensin II type 2 receptor stimulation with compound 21 improves neurological function after stroke in female rats: a pilot study. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1192-H1201.	1.5	19
17	Brain Vasculature and Cognition. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 593-602.	1.1	26
18	Dose–response, therapeutic time-window and tPA-combinatorial efficacy of compound 21: A randomized, blinded preclinical trial in a rat model of thromboembolic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1635-1647.	2.4	21

Abdelrahman Y Fouda

#	Article	IF	CITATIONS
19	Arginase 2 Overexpression Aggravates Ischemic Injury in Retinal Vascular Endothelial Cells. FASEB Journal, 2019, 33, 677.11.	0.2	1
20	Neuroprotection from optic nerve trauma by deletion of arginase 2. FASEB Journal, 2019, 33, 665.10.	0.2	0
21	Activation of the arginase 1/ornithine pathway suppresses ischemia/reperfusionâ€induced neuronal injury by suppressing HDAC3. FASEB Journal, 2019, 33, 500.8.	0.2	1
22	Deletion of Arginase 2 reduces neurodegeneration in a model of Multiple Sclerosis. FASEB Journal, 2019, 33, .	0.2	0
23	Response by Fouda and Switzer to Letter Regarding Article, "Minocycline in Acute Cerebral Hemorrhage: An Early Phase Randomized Trial― Stroke, 2018, 49, e19.	1.0	Ο
24	Retinal Neuroprotection From Optic Nerve Trauma by Deletion of Arginase 2. Frontiers in Neuroscience, 2018, 12, 970.	1.4	29
25	Arginase 1 promotes retinal neurovascular protection from ischemia through suppression of macrophage inflammatory responses. Cell Death and Disease, 2018, 9, 1001.	2.7	52
26	Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1. International Journal of Molecular Sciences, 2018, 19, 1215.	1.8	54
27	RAS modulation prevents progressive cognitive impairment after experimental stroke: a randomized, blinded preclinical trial. Journal of Neuroinflammation, 2018, 15, 229.	3.1	47
28	Targeting Polyamine Oxidase to Prevent Excitotoxicity-Induced Retinal Neurodegeneration. Frontiers in Neuroscience, 2018, 12, 956.	1.4	22
29	Abstract TP88: Delayed Therapeutic Window for Prevention of Progressive Cognitive Impairment After Experimental Stroke. Stroke, 2018, 49, .	1.0	Ο
30	Mechanisms of Retinal Ischemia/Reperfusion Injury: Arginase and the Mitochondria. FASEB Journal, 2018, 32, 824.3.	0.2	1
31	Myeloid Arginase 1 Protects Against Retinal Ischemiaâ€Reperfusion Injury. FASEB Journal, 2018, 32, 824.12.	0.2	0
32	Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke. Molecular Neurobiology, 2017, 54, 661-670.	1.9	40
33	Role of interleukin-10 in the neuroprotective effect of the Angiotensin Type 2 Receptor agonist, compound 21, after ischemia/reperfusion injury. European Journal of Pharmacology, 2017, 799, 128-134.	1.7	46
34	Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1. Cardiovascular Research, 2017, 113, 1664-1676.	1.8	82
35	Minocycline in Acute Cerebral Hemorrhage. Stroke, 2017, 48, 2885-2887.	1.0	65
36	Impact of Comorbidities on Acute Injury and Recovery in Preclinical Stroke Research: Focus on Hypertension and Diabetes. Translational Stroke Research, 2016, 7, 248-260.	2.3	55

Abdelrahman Y Fouda

#	Article	IF	CITATIONS
37	Renin–angiotensin system as a potential therapeutic target in stroke and retinopathy: experimental and clinical evidence. Clinical Science, 2016, 130, 221-238.	1.8	38
38	776: PHARMACOKINETICS OF MINOCYCLINE IN CRITICALLY ILL PATIENTS WITH INTRACEREBRAL HEMORRHAGE. Critical Care Medicine, 2016, 44, 270-270.	0.4	0
39	ARBs improve stroke outcome through an AT2-dependent, BDNF-induced proangiogenic and prorecovery response. Neural Regeneration Research, 2016, 11, 912.	1.6	4
40	Abstract WP101: Involvement of the Contralesional Angiotensin Type 2 Receptor in Compound 21 Mediated Functional Recovery After Stroke. Stroke, 2016, 47, .	1.0	0
41	Abstract WP113: Dose-response and Therapeutic Time-window of Compound 21: a Randomized Preclinical Trial in Rat Model of Thromboembolic Stroke. Stroke, 2016, 47, .	1.0	0
42	Compound 21 is pro-angiogenic in the brain and results in sustained recovery after ischemic stroke. Journal of Hypertension, 2015, 33, 170-180.	0.3	57
43	Imbalance of the Nerve Growth Factor and Its Precursor as a Potential Biomarker for Diabetic Retinopathy. BioMed Research International, 2015, 2015, 1-12.	0.9	46
44	Sequential Therapy with Minocycline and Candesartan Improves Long-Term Recovery After Experimental Stroke. Translational Stroke Research, 2015, 6, 309-322.	2.3	31
45	Cellular connections, microenvironment and brain angiogenesis in diabetes: Lost communication signals in the post-stroke period. Brain Research, 2015, 1623, 81-96.	1.1	23
46	Low-Dose Candesartan Enhances Molecular Mediators of Neuroplasticity and Subsequent Functional Recovery After Ischemic Stroke in Rats. Molecular Neurobiology, 2015, 51, 1542-1553.	1.9	49
47	Thioredoxin-Interacting Protein: a Novel Target for Neuroprotection in Experimental Thromboembolic Stroke in Mice. Molecular Neurobiology, 2015, 51, 766-778.	1.9	92
48	Vascular protective effects of Angiotensin Receptor Blockers: Beyond Blood pressure. Receptors & Clinical Investigation, 2015, 2, .	0.9	5
49	Abstract W P245: Impaired Response to Post-Stroke Candesartan Treatment in a Model of Type 2 Diabetes: Relationship to Angiotensin Receptors Expression. Stroke, 2015, 46, .	1.0	0
50	Abstract 31: The Angiotensin Type 2-receptor Agonist, Compound 21, Provides Neuroprotection After Ischemia Reperfusion Injury Through Interleukin 10 Upregulation. Stroke, 2015, 46, .	1.0	0
51	Cerebral Neovascularization in Diabetes: Implications for Stroke Recovery and beyond. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 553-563.	2.4	86
52	Abstract 307: Enhancement of Cerebrovascular Relaxation by Angiotensin II Type 2 Receptor Agonist, C21, is Lost in Type 2 Diabetes. Hypertension, 2014, 64, .	1.3	0
53	Abstract T P201: Sequential Treatment With Minocycline and Candesartan Improves Long Term Recovery After Stroke. Stroke, 2014, 45, .	1.0	0
54	Anti-inflammatory IL-10 is upregulated in both hemispheres after experimental ischemic stroke: Hypertension blunts the response. Experimental & Translational Stroke Medicine, 2013, 5, 12.	3.2	34