
William S Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8637684/publications.pdf Version: 2024-02-01

MILLIAM S HADDIS

#	Article	IF	CITATIONS
1	Omega-3 index is directly associated with a healthy red blood cell distribution width. Prostaglandins Leukotrienes and Essential Fatty Acids, 2022, 176, 102376.	2.2	7
2	The omega-3 index is inversely associated with the neutrophil-lymphocyte ratio in adults'. Prostaglandins Leukotrienes and Essential Fatty Acids, 2022, 177, 102397.	2.2	5
3	Red blood cell fatty acids and age-related macular degeneration in postmenopausal women. European Journal of Nutrition, 2022, 61, 1585-1594.	3.9	2
4	Circulating linoleic acid at the time of myocardial infarction and risk of primary ventricular fibrillation. Scientific Reports, 2022, 12, 4377.	3.3	2
5	Red blood cell fatty acid patterns from 7 countries: Focus on the Omega-3 index. Prostaglandins Leukotrienes and Essential Fatty Acids, 2022, 179, 102418.	2.2	21
6	Harmonizing blood DHA levels in pregnancy studies: An interlaboratory investigation. Prostaglandins Leukotrienes and Essential Fatty Acids, 2022, 179, 102417.	2.2	4
7	PUFA ω-3 and ω-6 biomarkers and sleep: a pooled analysis of cohort studies on behalf of the Fatty Acids and Outcomes Research Consortium (FORCE). American Journal of Clinical Nutrition, 2022, 115, 864-876.	4.7	1
8	The Omega-3 Index is Higher in People from a Coastal Town versus Five Inland US Cities: An Observational Study. Nutrition Research, 2022, , .	2.9	0
9	Red Blood Cell DHA Is Inversely Associated with Risk of Incident Alzheimer's Disease and All-Cause Dementia: Framingham Offspring Study. Nutrients, 2022, 14, 2408.	4.1	14
10	Increases in erythrocyte DHA are not associated with increases in LDL-cholesterol: Cooper center longitudinal study. Journal of Clinical Lipidology, 2021, 15, 212-217.	1.5	1
11	Linoleic Acid Status in Cell Membranes Inversely Relates to the Prevalence of Symptomatic Carotid Artery Disease. Stroke, 2021, 52, 703-706.	2.0	5
12	Assessing the Omega-3 Index in a population: Canada did it right. American Journal of Clinical Nutrition, 2021, 113, 779-780.	4.7	2
13	n-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes: An Individual Participant-Level Pooling Project of 20 Prospective Cohort Studies. Diabetes Care, 2021, 44, 1133-1142.	8.6	50
14	Effects of menopausal hormone therapy on erythrocyte n–3 and n–6 PUFA concentrations in the Women's Health Initiative randomized trial. American Journal of Clinical Nutrition, 2021, 113, 1700-1706.	4.7	7
15	Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 166, 102250.	2.2	81
16	Baseline red blood cell and breast milk DHA levels affect responses to standard dose of DHA in lactating women on a controlled feeding diet. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 166, 102248.	2.2	7
17	Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nature Communications, 2021, 12, 2329.	12.8	132
18	Beyond Nutrient Deficiency—Opportunities to Improve Nutritional Status and Promote Health Modernizing DRIs and Supplementation Recommendations. Nutrients, 2021, 13, 1844.	4.1	6

#	Article	IF	CITATIONS
19	Bang and Dyerberg's omega-3 discovery turns fifty. Nature Food, 2021, 2, 303-305.	14.0	10
20	Aspirin and omega-3 fatty acid status interact in the prevention of cardiovascular diseases in Framingham Heart Study. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 169, 102283.	2.2	3
21	Using an erythrocyte fatty acid fingerprint to predict risk of all-cause mortality: the Framingham Offspring Cohort. American Journal of Clinical Nutrition, 2021, 114, 1447-1454.	4.7	18
22	Virtual non-compliance with Omega-3 treatment results in null effects: The RANGER study. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 171, 102319.	2.2	3
23	Association of the Omega-3 Index with Incident Prostate Cancer with Updated Meta-Analysis: The Cooper Center Longitudinal Study. Nutrients, 2021, 13, 384.	4.1	9
24	Recent Clinical Trials Shed New Light on the Cardiovascular Benefits of Omega-3 Fatty Acids. Methodist DeBakey Cardiovascular Journal, 2021, 15, 171.	1.0	39
25	Trafficking of nonesterified fatty acids in insulin resistance and relationship to dysglycemia. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E392-E404.	3.5	12
26	Insulin Resistance Modifies the Effects of Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial Infarction (from the OMEGA-REMODEL Randomized Clinical Trial). American Journal of Cardiology, 2020, 125, 678-684.	1.6	4
27	Erythrocyte omega-3 index, ambient fine particle exposure, and brain aging. Neurology, 2020, 95, e995-e1007.	1.1	15
28	Higher omega-3 index is associated with more rapid heart rate recovery in healthy men and women. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 163, 102206.	2.2	4
29	One-Year Effects of Omega-3 Treatment on Fatty Acids, Oxylipins, and Related Bioactive Lipids and Their Associations with Clinical Lipid and Inflammatory Biomarkers: Findings from a Substudy of the Vitamin D and Omega-3 Trial (VITAL). Metabolites, 2020, 10, 431.	2.9	13
30	Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Medicine, 2020, 17, e1003102.	8.4	38
31	Association of <i>FADS1/2</i> Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis. JAMA Cardiology, 2020, 5, 694.	6.1	32
32	Translating plasma eicosapentaenoic acid concentrations into erythrocyte percentages of eicosapentaenoic acid plus docosahexaenoic acid during treatment with icosapent ethyl. Journal of Clinical Lipidology, 2019, 13, 771-777.	1.5	1
33	Predicting the effects of supplemental EPA and DHA on the omega-3 index. American Journal of Clinical Nutrition, 2019, 110, 1034-1040.	4.7	63
34	Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory From the American Heart Association. Circulation, 2019, 140, e673-e691.	1.6	282
35	Effect of High-Dose Marine Omega-3 Fatty Acids on Atherosclerosis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients, 2019, 11, 2599.	4.1	21
36	Understanding why REDUCE-IT was positive – Mechanistic overview of eicosapentaenoic acid. Progress in Cardiovascular Diseases, 2019, 62, 401-405.	3.1	15

#	Article	IF	CITATIONS
37	Sea Change for Marine Omega-3s. Mayo Clinic Proceedings, 2019, 94, 2524-2533.	3.0	24
38	TAM Family Receptor Kinase Inhibition Reverses MDSC-Mediated Suppression and Augments Anti–PD-1 Therapy in Melanoma. Cancer Immunology Research, 2019, 7, 1672-1686.	3.4	85
39	Genetic profiling of fatty acid desaturase polymorphisms identifies patients who may benefit from high-dose omega-3 fatty acids in cardiac remodeling after acute myocardial infarction—Post-hoc analysis from the OMEGA-REMODEL randomized controlled trial. PLoS ONE, 2019, 14, e0222061.	2.5	8
40	Cross-sectional study of the combined associations of dietary and supplemental eicosapentaenoic acidâ€⁻+â€⁻docosahexaenoic acid on Omega-3 Index. Nutrition Research, 2019, 71, 43-55.	2.9	11
41	Peripheral Artery Disease Is Associated with a Deficiency of Erythrocyte Membrane nâ€3 Polyunsaturated Fatty Acids. Lipids, 2019, 54, 211-219.	1.7	5
42	<i>n</i> -3 Fatty acids and risk for fatal coronary disease. Proceedings of the Nutrition Society, 2019, 78, 526-531.	1.0	11
43	Comparison of plasma levels of different species of trans fatty acids in Japanese male patients with acute coronary syndrome versus healthy men. Atherosclerosis, 2019, 284, 173-180.	0.8	12
44	Comparing the serum TAG response to high-dose supplementation of either DHA or EPA among individuals with increased cardiovascular risk: the ComparED study. British Journal of Nutrition, 2019, 121, 1223-1234.	2.3	14
45	Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Circulation, 2019, 139, 2422-2436.	1.6	199
46	Interlaboratory Assessment of Dried Blood Spot Fatty Acid Compositions. Lipids, 2019, 54, 755-761.	1.7	10
47	Parallel declines in erythrocyte trans fatty acids and US fatal ischemic heart disease rates. Nutrition Research, 2019, 71, 111-114.	2.9	7
48	The Omega-3 Index in National Collegiate Athletic Association Division I Collegiate Football Athletes. Journal of Athletic Training, 2019, 54, 7-11.	1.8	36
49	Association of reported fish intake and supplementation status with the omega-3 index. Prostaglandins Leukotrienes and Essential Fatty Acids, 2019, 142, 4-10.	2.2	54
50	A Randomized Placebo-Controlled Trial of Omega-3 and Sertraline in Depressed Patients With or at Risk for Coronary Heart Disease. Journal of Clinical Psychiatry, 2019, 80, .	2.2	22
51	Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: The Framingham Heart Study. Journal of Clinical Lipidology, 2018, 12, 718-727.e6.	1.5	91
52	Redefining target omega-3 index levels: The Japan Public Health CenterÂStudy. Atherosclerosis, 2018, 272, 216-218.	0.8	3
53	Abnormal lipoprotein oxylipins in metabolic syndrome and partial correction by omega-3 fatty acids. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 128, 1-10.	2.2	34
54	The Omega-6:Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 132, 34-40.	2.2	93

#	Article	IF	CITATIONS
55	Blood Fatty Acid Profiles: New Biomarkers for Cardiometabolic Disease Risk. Current Atherosclerosis Reports, 2018, 20, 22.	4.8	30
56	Nutritional Supplements for the Treatment and Prevention of Sports-Related Concussion — Omega 3 Fatty Acids: Evidence Still Lacking?. Current Sports Medicine Reports, 2018, 17, 103-104.	1.2	1
57	A Prenatal DHA Test to Help Identify Women at Increased Risk for Early Preterm Birth: A Proposal. Nutrients, 2018, 10, 1933.	4.1	17
58	Fish Oil and Perioperative Bleeding. Circulation: Cardiovascular Quality and Outcomes, 2018, 11, e004584.	2.2	36
59	Erythrocyte n-6 Fatty Acids and Risk for Cardiovascular Outcomes and Total Mortality in the Framingham Heart Study. Nutrients, 2018, 10, 2012.	4.1	19
60	Effects of dietary supplementation with krill meal on serum pro-inflammatory markers after the Iditarod sled dog race. Research in Veterinary Science, 2018, 121, 18-22.	1.9	9
61	Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Medicine, 2018, 15, e1002670.	8.4	143
62	Omega-6 fatty acids, inflammation and cardiometabolic health: Overview of supplementary issue. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 139, 1-2.	2.2	5
63	Association of Whole Blood Fatty Acids and Growth in Southern Ghanaian Children 2–6 Years of Age. Nutrients, 2018, 10, 954.	4.1	7
64	Prospective Associations of Erythrocyte Composition and Dietary Intake of n-3 and n-6 PUFA with Measures of Cognitive Function. Nutrients, 2018, 10, 1253.	4.1	21
65	A Tactical Medicine After-action Report of the San Bernardino Terrorist Incident. Western Journal of Emergency Medicine, 2018, 19, 287-293.	1.1	7
66	Why docosapentaenoic acid is not included in the Omega-3 Index. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 135, 18-21.	2.2	10
67	A genome-wide association study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham Heart Study Offspring Cohort. PLoS ONE, 2018, 13, e0194882.	2.5	26
68	Omega-3 Fatty Acids Effect on Post-Myocardial Infarction ST2 Levels for HeartÂFailure and MyocardialÂFibrosis. Journal of the American College of Cardiology, 2018, 72, 953-955.	2.8	7
69	Long-Chain Omega-3 Fatty Acid Supplements in Depressed HeartÂFailureÂPatients. JACC: Heart Failure, 2018, 6, 833-843.	4.1	34
70	Whole blood n-3 fatty acids are associated with executive function in 2–6-year-old Northern Ghanaian children. Journal of Nutritional Biochemistry, 2018, 57, 287-293.	4.2	18
71	Association of whole blood n-6 fatty acids with stunting in 2-to-6-year-old Northern Ghanaian children: A cross-sectional study. PLoS ONE, 2018, 13, e0193301.	2.5	19
72	Omega-3 Index in Division I Collegiate American FootballAthletes. Medicine and Science in Sports and Exercise, 2018, 50, 307.	0.4	0

#	Article	IF	CITATIONS
73	Tumor Vascularity Does Not Predict Response to Yttrium-90 Radioembolization for Hepatic Metastases from Colorectal Cancer. Journal of Clinical Interventional Radiology ISVIR, 2018, 02, 003-012.	0.2	0
74	Red blood cell polyunsaturated fatty acids and mortality in the Women's Health Initiative Memory Study. Journal of Clinical Lipidology, 2017, 11, 250-259.e5.	1.5	59
75	Response by Heydari et al to Letter Regarding Article, "Effect of Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial Infarction: The OMEGA-REMODEL Randomized Clinical Trial― Circulation, 2017, 135, e13-e14.	1.6	0
76	A modified LVAD technique to augment caval and pulmonary arterial blood flow in the "failing Fontan―circulation. Journal of Cardiac Surgery, 2017, 32, 126-132.	0.7	4
77	Bioequivalence Demonstration for \hat{I} C-3 Acid Ethyl Ester Formulations: Rationale for Modification of Current Guidance. Clinical Therapeutics, 2017, 39, 652-658.	2.5	12
78	Influence of maternal and socioeconomic factors on breast milk fatty acid composition in urban, Iowâ€income families. Maternal and Child Nutrition, 2017, 13, e12423.	3.0	20
79	The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis, 2017, 262, 51-54.	0.8	138
80	Quantitative Erythrocyte Omega-3 EPA Plus DHA Levels are Related to Higher Regional Cerebral Blood Flow on Brain SPECT. Journal of Alzheimer's Disease, 2017, 58, 1189-1199.	2.6	17
81	Conversion ratios of <i>n</i> -3 fatty acids between plasma and erythrocytes: a systematic review and meta-regression. British Journal of Nutrition, 2017, 117, 1162-1173.	2.3	15
82	Supplementation with high-dose docosahexaenoic acid increases the Omega-3 Index more than high-dose eicosapentaenoic acid. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 120, 8-14.	2.2	46
83	Predictors of change in omega-3 index with fish oil supplementation in peripheral artery disease. Journal of Surgical Research, 2017, 210, 124-131.	1.6	9
84	Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39â€~740 adults from 20 prospective cohort studies. Lancet Diabetes and Endocrinology,the, 2017, 5, 965-974.	11.4	213
85	The prognostic utility of dihomo-gamma-linolenic acid (DGLA) in patients with acute coronary heart disease. International Journal of Cardiology, 2017, 249, 12-17.	1.7	9
86	Relationship between the omega-3 index and specialized pro-resolving lipid mediators in patients with peripheral arterial disease taking fish oil supplements. Journal of Clinical Lipidology, 2017, 11, 1289-1295.	1.5	19
87	Erythrocyte omega-3 fatty acids are inversely associated with incident dementia: Secondary analyses of longitudinal data from the Women's Health Initiative Memory Study (WHIMS). Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 121, 68-75.	2.2	37
88	Discrepancy between Knowledge and Perceptions of Dietary Omega-3 Fatty Acid Intake Compared with the Omega-3 Index. Nutrients, 2017, 9, 930.	4.1	19
89	The Omega-3 Index Is Inversely Associated with Depressive Symptoms among Individuals with Elevated Oxidative Stress Biomarkers. Journal of Nutrition, 2016, 146, 758-766.	2.9	36
90	Baseline Blood Levels of Omega-3 and Depression Remission. Journal of Clinical Psychiatry, 2016, 77, e138-e143.	2.2	32

#	Article	IF	CITATIONS
91	Measurement of the Omega-3 Index in Dried Blood Spots. Annals of Clinical and Laboratory Research, 2016, 04, .	0.1	51
92	Evolution of membrane oxygenator technology for utilization during pediatric cardiopulmonary bypass. Pediatric Health, Medicine and Therapeutics, 2016, Volume 7, 45-56.	1.6	11
93	Whole Blood Levels of the n-6 Essential Fatty Acid Linoleic Acid Are Inversely Associated with Stunting in 2-to-6 Year Old Tanzanian Children: A Cross-Sectional Study. PLoS ONE, 2016, 11, e0154715.	2.5	21
94	Red blood cell oleic acid levels reflect olive oil intake while omega-3 levels reflect fish intake and the use of omega-3 acid ethyl esters: The Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico–Heart Failure trial. Nutrition Research, 2016, 36, 989-994.	2.9	30
95	Very early administration of glucose-insulin-potassium by emergency medical service for acute coronary syndromes: Biological mechanisms for benefit in the IMMEDIATE Trial. American Heart Journal, 2016, 178, 168-175.	2.7	5
96	Should there be a target level of docosahexaenoic acid in breast milk?. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 92-96.	2.5	17
97	Human Milk Fatty Acid Composition: Comparison of Novel Dried Milk Spot Versus Standard Liquid Extraction Methods. Journal of Mammary Gland Biology and Neoplasia, 2016, 21, 131-138.	2.7	12
98	Breast milk DHA levels may increase after informing women: a community-based cohort study from South Dakota USA. International Breastfeeding Journal, 2016, 12, 7.	2.6	24
99	Whole-blood fatty acids are associated with executive function in Tanzanian children aged 4–6 years: a cross-sectional study. British Journal of Nutrition, 2016, 116, 1537-1545.	2.3	14
100	A prospective, randomized, double blind, placebo-controlled evaluation of the effects of eicosapentaenoic acid and docosahexaenoic acid on the clinical signs and erythrocyte membrane polyunsaturated fatty acid concentrations in dogs with osteoarthritis. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 109, 1-7.	2.2	42
101	Conducting omega-3 clinical trials with cardiovascular outcomes: Proceedings of a workshop held at ISSFAL 2014. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 107, 30-42.	2.2	51
102	Fish Oils and Bleeding—Where Is the Evidence?. JAMA Internal Medicine, 2016, 176, 1405.	5.1	3
103	Effect of Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial Infarction. Circulation, 2016, 134, 378-391.	1.6	148
104	RBC omega-3 predicts risk for death. Atherosclerosis, 2016, 252, 192-193.	0.8	2
105	Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 112, 12-23.	2.2	72
106	Creating the Future of Evidence-Based Nutrition Recommendations: Case Studies from Lipid Research. Advances in Nutrition, 2016, 7, 747-755.	6.4	6
107	Risk factors associated with plasma omega-3 fatty acid levels in patients with suspected coronary artery disease. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 113, 40-45.	2.2	16
108	Omega-3 Fatty Acids and Cardiovascular Disease: Are There Benefits?. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 69.	0.9	135

#	Article	IF	CITATIONS
109	Analysis of breast milk fatty acid composition using dried milk samples. International Breastfeeding Journal, 2016, 11, 1.	2.6	56
110	Whole Blood ï‰-3 Fatty Acids Are Inversely Associated with Carotid Intima-Media Thickness in Indigenous Mexican Women. Journal of Nutrition, 2016, 146, 1365-1372.	2.9	8
111	Could erythrocyte omegaâ€3 fatty acid levels be harbingers of bipolar disorder?. Microbial Biotechnology, 2016, 10, 191-192.	1.7	1
112	Daily Enteral DHA Supplementation Alleviates Deficiency in Premature Infants. Lipids, 2016, 51, 423-433.	1.7	39
113	Associations of erythrocyte fatty acid patterns with insulin resistance. American Journal of Clinical Nutrition, 2016, 103, 902-909.	4.7	15
114	Multiple differences between patients who initiate fish oil supplementation post–myocardial infarction and those who do not: the TRIUMPH Study. Nutrition Research, 2016, 36, 65-71.	2.9	7
115	Association between omega-3 fatty acids and serum prostate-specific antigen. Nutrition and Cancer, 2016, 68, 58-62.	2.0	7
116	Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women's Health Initiative Memory Study. PLoS ONE, 2016, 11, e0147894.	2.5	33
117	Fatty acids linked to cardiovascular mortality are associated with risk factors. International Journal of Circumpolar Health, 2015, 74, 28055.	1.2	48
118	Prognostic Utility of Vitamin D in Acute Coronary Syndrome Patients in Coastal Norway. Disease Markers, 2015, 2015, 1-11.	1.3	9
119	Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation. Nutrients, 2015, 7, 6390-6404.	4.1	37
120	Plasma phospholipids, non-esterified plasma polyunsaturated fatty acids and oxylipids are associated with BMI. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 95, 31-40.	2.2	55
121	The relation of red blood cell fatty acids with vascular stiffness, cardiac structure and left ventricular function: The Framingham Heart Study. Vascular Medicine, 2015, 20, 5-13.	1.5	10
122	What is the relationship between gestational age and docosahexaenoic acid (DHA) and arachidonic acid (ARA) levels?. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 100, 5-11.	2.2	39
123	Pushing the limits with omega-3 fatty acids. Trends in Cardiovascular Medicine, 2015, 25, 724-725.	4.9	Ο
124	Validation of a lipoprotein(a) particle concentration assay by quantitative lipoprotein immunofixation electrophoresis. Clinica Chimica Acta, 2015, 439, 219-224.	1.1	24
125	Red blood cell fatty acids and biomarkers of inflammation: A cross-sectional study in a community-based cohort. Atherosclerosis, 2015, 240, 431-436.	0.8	53
126	Effects of niacin and omega-3 fatty acids on the apolipoproteins in overweight patients with elevated triglycerides and reduced HDL cholesterol. Atherosclerosis, 2015, 240, 520-525.	0.8	18

#	Article	IF	CITATIONS
127	Meta-Analysis of Long-Chain Omega-3 Polyunsaturated Fatty Acids (LCï‰-3PUFA) and Prostate Cancer. Nutrition and Cancer, 2015, 67, 543-554.	2.0	31
128	Comparison of cardiometabolic risk biomarkers from a national clinical laboratory with the US adult population. Journal of Clinical Lipidology, 2015, 9, 817-823.	1.5	8
129	nâ€3 PUFA Esterified to Glycerol or as Ethyl Esters Reduce Nonâ€Fasting Plasma Triacylglycerol in Subjects with Hypertriglyceridemia: A Randomized Trial. Lipids, 2015, 50, 165-175.	1.7	24
130	Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement. Clinical Nutrition, 2015, 34, 212-218.	5.0	72
131	Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. Journal of Perinatology, 2015, 35, 1-7.	2.0	86
132	NOD/SCID-GAMMA Mice Are an Ideal Strain to Assess the Efficacy of Therapeutic Agents Used in the Treatment of Myeloma Bone Disease. PLoS ONE, 2015, 10, e0119546.	2.5	36
133	N-3 Fatty Acids: Role in Treating Dyslipidemias and Preventing Cardiovascular Disease. Contemporary Endocrinology, 2015, , 355-370.	0.1	Ο
134	Effect of Omega-3 Fatty Acid Ethyl Esters on the Oxylipin Composition of Lipoproteins in Hypertriglyceridemic, Statin-Treated Subjects. PLoS ONE, 2014, 9, e111471.	2.5	29
135	Effects of Omega-3 Fatty Acid Supplementation on Neurocognitive Functioning and Mood in Deployed U.S. Soldiers: A Pilot Study. Military Medicine, 2014, 179, 396-403.	0.8	32
136	Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes. Neurology, 2014, 82, 435-442.	1.1	147
137	Omegaâ€3 fatty acid biomarkers and subsequent depressive symptoms. International Journal of Geriatric Psychiatry, 2014, 29, 747-757.	2.7	30
138	Lipoprotein(a) mass: A massively misunderstood metric. Journal of Clinical Lipidology, 2014, 8, 550-553.	1.5	41
139	n-3 Fatty acids affect haemostasis but do not increase the risk of bleeding: clinical observations and mechanistic insights. British Journal of Nutrition, 2014, 111, 1652-1662.	2.3	78
140	RE: Plasma Phospholipid Fatty Acids and Prostate Cancer Risk in the SELECT Trial. Journal of the National Cancer Institute, 2014, 106, dju019-dju019.	6.3	7
141	Structural Equation Modeling for Analyzing Erythrocyte Fatty Acids in Framingham. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-14.	1.3	5
142	Unexpected similarity in RBC DHA and AA levels between bottlenose dolphins and humans. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 90, 55-59.	2.2	12
143	Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content?. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 91, 87-96.	2.2	39
144	Clinical correlates of red blood cell omega-3 fatty acid content in male veterans with peripheral arterial disease. Journal of Vascular Surgery, 2014, 60, 1325-1331.	1.1	9

#	Article	IF	CITATIONS
145	Age invariance in semantic and episodic metamemory: Both younger and older adults provide accurate feeling-of-knowing for names of faces. Aging, Neuropsychology, and Cognition, 2014, 21, 27-51.	1.3	20
146	Achieving optimal n–3 fatty acid status: the vegetarian's challenge or not. American Journal of Clinical Nutrition, 2014, 100, 449S-452S.	4.7	18
147	Omega-6 Fatty Acids and Cardiovascular Disease. Circulation, 2014, 130, 1562-1564.	1.6	51
148	Does APOE Genotype Modify the Relations Between Serum Lipid and Erythrocyte Omega-3 Fatty Acid Levels?. Journal of Cardiovascular Translational Research, 2014, 7, 526-32.	2.4	8
149	Effects of supplemental long-chain omega-3 fatty acids and erythrocyte membrane fatty acid content on circulating inflammatory markers in a randomized controlled trial of healthy adults. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 91, 161-168.	2.2	44
150	Nonresponse to Neoadjuvant Chemotherapy for Muscle-Invasive Urothelial Cell Carcinoma of the Bladder. Clinical Genitourinary Cancer, 2014, 12, 210-213.	1.9	9
151	Treatment with omega-3 fatty acid ethyl-ester alters fatty acid composition of lipoproteins in overweight or obese adults with insulin resistance. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 90, 69-75.	2.2	12
152	Reduced Apolipoprotein Glycosylation in Patients with the Metabolic Syndrome. PLoS ONE, 2014, 9, e104833.	2.5	38
153	The Spiritual Needs and Resources of Hospitalized Primary Care Patients. Journal of Religion and Health, 2013, 52, 1306-1318.	1.7	41
154	Comparative effects of an acute dose of fish oil on omega-3 fatty acid levels in red blood cells versus plasma: Implications for clinical utility. Journal of Clinical Lipidology, 2013, 7, 433-440.	1.5	78
155	Validation of Lp(a) Particle Number Analysis by Quantitative Lipo-IFE. Journal of Clinical Lipidology, 2013, 7, 240-241.	1.5	1
156	Long-chain omega-3 fatty acids: time to establish a dietary reference intake. Nutrition Reviews, 2013, 71, 692-707.	5.8	107
157	Association between n-3 polyunsaturated fatty acid content of red blood cells and inflammatory biomarkers in patients with peripheral artery disease. Journal of Vascular Surgery, 2013, 58, 1283-1290.	1.1	26
158	Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: Observations from 160,000 patients. Prostaglandins Leukotrienes and Essential Fatty Acids, 2013, 88, 257-263.	2.2	126
159	Red blood cell fatty acid levels improve GRACE score prediction of 2-yr mortality in patients with myocardial infarction. International Journal of Cardiology, 2013, 168, 53-59.	1.7	54
160	The Association Between Erythrocyte n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Content and Inflammation in Male Patients With Peripheral Artery Disease (PAD). Journal of Vascular Surgery, 2013, 57, 10S-11S.	1.1	0
161	Subtalar Joint Septic Arthritis in a Patient with Hypogammaglobulinemia. Journal of Foot and Ankle Surgery, 2013, 52, 242-248.	1.0	14
162	Determinants of Erythrocyte Omegaâ€3 Fatty Acid Content in Response to Fish Oil Supplementation: A Dose–Response Randomized Controlled Trial. Journal of the American Heart Association, 2013, 2, e000513.	3.7	172

#	Article	IF	CITATIONS
163	Red blood cell omega-3 fatty acid levels and neurocognitive performance in deployed U.S. Servicemembers. Nutritional Neuroscience, 2013, 16, 30-38.	3.1	71
164	Omega-3 Fatty Acids and Cardiovascular Disease: New Developments and Applications. Postgraduate Medicine, 2013, 125, 100-113.	2.0	72
165	Are n-3 fatty acids still cardioprotective?. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 141-149.	2.5	54
166	Docosahexaenoic acid ethyl esters ineffective?. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2259-E2259.	7.1	3
167	Plasma Phospholipid Omegaâ€3 Fatty Acids and Incidence of Postoperative Atrial Fibrillation in the OPERA Trial. Journal of the American Heart Association, 2013, 2, e000397.	3.7	24
168	Omega-3 fatty acids and domain-specific cognitive aging. Neurology, 2013, 81, 1484-1491.	1.1	38
169	n-3 Polyunsaturated fatty acids supplementation in peripheral artery disease: the OMEGA-PAD trial. Vascular Medicine, 2013, 18, 263-274.	1.5	27
170	Myocardial Tissue Remodeling in Adolescent Obesity. Journal of the American Heart Association, 2013, 2, e000279.	3.7	48
171	Pathologic Response Rates of Gemcitabine/Cisplatin versus Methotrexate/Vinblastine/Adriamycin/Cisplatin Neoadjuvant Chemotherapy for Muscle Invasive Urothelial Bladder Cancer. Advances in Urology, 2013, 2013, 1-6.	1.3	34
172	Omegaâ€3 fatty acid therapy reduces triglycerides and interleukinâ€6 in hypertriglyeridemic <scp>HIV</scp> patients. HIV Medicine, 2013, 14, 530-539.	2.2	28
173	Assessing fatty acid biostatus: Red blood cells or plasma?. Lipid Technology, 2013, 25, 179-181.	0.3	10
174	The Role of Age and Sex in Symptoms, Neurocognitive Performance, and Postural Stability in Athletes After Concussion. American Journal of Sports Medicine, 2012, 40, 1303-1312.	4.2	396
175	Stearidonic acid as a â€~pro-eicosapentaenoic acid'. Current Opinion in Lipidology, 2012, 23, 30-34.	2.7	12
176	Stearidonic Acid–Enhanced Soybean Oil: A Plant-Based Source of (n-3) Fatty Acids for Foods. Journal of Nutrition, 2012, 142, 600S-604S.	2.9	39
177	Heart rate is associated with markers of fatty acid desaturation: the GOCADAN study. International Journal of Circumpolar Health, 2012, 71, 17343.	1.2	12
178	Effects of prescription niacin and omega-3 fatty acids on lipids and vascular function in metabolic syndrome: a randomized controlled trial. Journal of Lipid Research, 2012, 53, 2429-2435.	4.2	36
179	Relative Bioavailability of an Emulsion Formulation for Omega-3-Acid Ethyl Esters Compared to the Commercially Available Formulation: A Randomized, Parallel-Group, Single-Dose Study Followed by Repeat Dosing in Healthy Volunteers. Clinical Pharmacology in Drug Development, 2012, 1, 14-23.	1.6	16
180	Clinical correlates and heritability of erythrocyte eicosapentaenoic and docosahexaenoic acid content in the Framingham Heart Study. Atherosclerosis, 2012, 225, 425-431.	0.8	130

#	Article	IF	CITATIONS
181	Changes in Erythrocyte Membrane Trans and Marine Fatty Acids between 1999 and 2006 in Older Americans. Journal of Nutrition, 2012, 142, 1297-1303.	2.9	92
182	Fish oil — How does it reduce plasma triglycerides?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 843-851.	2.4	220
183	Correcting the Effects of â^'20 °C Storage and Aliquot Size on Erythrocyte Fatty Acid Content in the Women's Health Initiative. Lipids, 2012, 47, 835-846.	1.7	56
184	Effects of Marine-Derived Omega-3 Fatty Acids on Systemic Hemodynamics at Rest and During Stress: a Dose–Response Study. Annals of Behavioral Medicine, 2012, 44, 301-308.	2.9	18
185	Variants in CPT1A, FADS1, and FADS2 are Associated with Higher Levels of Estimated Plasma and Erythrocyte Delta-5 Desaturases in Alaskan Eskimos. Frontiers in Genetics, 2012, 3, 86.	2.3	21
186	Omega-3 Fatty Acids and Cardiovascular Disease Prevention. Current Nutrition Reports, 2012, 1, 115-122.	4.3	2
187	Relation Between Red Blood Cell Omega-3 Fatty Acid Index and Bleeding During Acute Myocardial Infarction. American Journal of Cardiology, 2012, 109, 13-18.	1.6	28
188	The effects of EPA + DHA and aspirin on inflammatory cytokines and angiogenesis factors. World Journal of Cardiovascular Diseases, 2012, 02, 14-19.	0.2	26
189	Predictors of Omega-3 Index in Patients With Acute Myocardial Infarction. Mayo Clinic Proceedings, 2011, 86, 626-632.	3.0	28
190	Using omega-3 fatty acids in the practice of clinical lipidology. Journal of Clinical Lipidology, 2011, 5, 424-433.	1.5	4
191	Membrane Level of Omega-3 Docosahexaenoic Acid Is Associated with Severity of Obstructive Sleep Apnea. Journal of Clinical Sleep Medicine, 2011, 07, 391-396.	2.6	35
192	Once-Daily Extended-Release Niacin Lowers Serum Phosphorus Concentrations in Patients With Metabolic Syndrome Dyslipidemia. American Journal of Kidney Diseases, 2011, 57, 181-182.	1.9	9
193	Dr. Harris' Invited Commentary. Journal of Foot and Ankle Surgery, 2011, 50, 3.	1.0	1
194	Relation of Whole Blood n-3 Fatty Acid Levels to Exercise Parameters in Patients With Stable Coronary Artery Disease (from the Heart and Soul Study). American Journal of Cardiology, 2011, 107, 1149-1154.	1.6	24
195	Low Levels of the Omegaâ€3 Index are Associated with Sudden Cardiac Arrest and Remain Stable in Survivors in the Subacute Phase. Lipids, 2011, 46, 151-161.	1.7	54
196	Omega-3 Fatty Acids in Food and Pharma: The Enabling Role of Biotechnology. Current Atherosclerosis Reports, 2011, 13, 467-473.	4.8	25
197	Determinants of the omega-3 index in a Mediterranean population at increased risk for CHD. British Journal of Nutrition, 2011, 106, 425-431.	2.3	62
198	<i>>n</i> -6 Fatty acids and risk for CHD: consider all the evidence. British Journal of Nutrition, 2011, 106, 951-952.	2.3	6

#	Article	IF	CITATIONS
199	Low- and High-Dose Plant and Marine (n-3) Fatty Acids Do Not Affect Plasma Inflammatory Markers in Adults with Metabolic Syndrome. Journal of Nutrition, 2011, 141, 2166-2171.	2.9	82
200	Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. American Journal of Clinical Nutrition, 2011, 93, 243-252.	4.7	243
201	Twentieth-century trends in essential fatty acid intakes and the predicted omega-3 index: evidence versus estimates. American Journal of Clinical Nutrition, 2011, 93, 907-908.	4.7	14
202	Omega-3 Fatty Acids Prevent Pressure Overload–Induced Cardiac Fibrosis Through Activation of Cyclic GMP/Protein Kinase G Signaling in Cardiac Fibroblasts. Circulation, 2011, 123, 584-593.	1.6	137
203	Effect of dietary omega-3 fatty acids on the heart rate and the heart rate variability responses to myocardial ischemia or submaximal exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2288-H2299.	3.2	28
204	Omega-6 and omega-3 fatty acids: partners in prevention. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 125-129.	2.5	37
205	Effect of Omega-3 Fatty Acids on Heart Rate Variability in Depressed Patients With Coronary Heart Disease. Psychosomatic Medicine, 2010, 72, 748-754.	2.0	34
206	Individual saturated fatty acids are associated with different components of insulin resistance and glucose metabolism: the GOCADAN study. International Journal of Circumpolar Health, 2010, 69, 344-351.	1.2	46
207	Fish Oil for Primary and Secondary Prevention of Coronary Heart Disease. Current Atherosclerosis Reports, 2010, 12, 66-72.	4.8	60
208	The Omega-3 Index: Clinical Utility for Therapeutic Intervention. Current Cardiology Reports, 2010, 12, 503-508.	2.9	119
209	The Debate about n-6 Polyunsaturated Fatty Acid Recommendations for Cardiovascular Health. Journal of the American Dietetic Association, 2010, 110, 201-204.	1.1	38
210	Biological variability of blood omega-3 biomarkers. Clinical Biochemistry, 2010, 43, 338-340.	1.9	150
211	Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters. Journal of Lipid Research, 2010, 51, 2074-2081.	4.2	118
212	Prefeeding With ω-3 Fatty Acids Suppresses Inflammation Following Hemorrhagic Shock. Journal of Parenteral and Enteral Nutrition, 2010, 34, 496-502.	2.6	6
213	Dietary intake of stearidonic acid–enriched soybean oil increases the omega-3 index: randomized, double-blind clinical study of efficacy and safety. American Journal of Clinical Nutrition, 2010, 92, 766-775.	4.7	101
214	Blood Eicosapentaenoic and Docosahexaenoic Acids Predict All-Cause Mortality in Patients With Stable Coronary Heart Disease. Circulation: Cardiovascular Quality and Outcomes, 2010, 3, 406-412.	2.2	81
215	Association of Marine Omega-3 Fatty Acid Levels With Telomeric Aging in Patients With Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2010, 303, 250.	7.4	294
216	Effects of dietary omega–3 fatty acids on ventricular function in dogs with healed myocardial infarctions: in vivo and in vitro studies. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1219-H1228.	3.2	38

#	Article	IF	CITATIONS
217	Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters. Journal of Lipid Research, 2010, 51, 2074-2081.	4.2	97
218	Omega-3 Fatty Acids and Cognitive Function in Women. Women's Health, 2010, 6, 119-134.	1.5	41
219	Heart rate is associated with red blood cell fatty acid concentration: The Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. American Heart Journal, 2010, 159, 1020-1025.	2.7	35
220	Omega-3 Fatty Acids. , 2010, , 577-586.		7
221	Omega-3 Fatty Acids. , 2009, , 326-338.		9
222	Red Blood Cell Fatty Acid Patterns and Acute Coronary Syndrome. PLoS ONE, 2009, 4, e5444.	2.5	54
223	Dose-Response of <i>n</i> -3 Polyunsaturated Fatty Acids on Lipid Profile and Tolerability in Mildly Hypertriglyceridemic Subjects. Journal of Medicinal Food, 2009, 12, 803-808.	1.5	14
224	(n-3) Fatty Acid Content of Red Blood Cells Does Not Predict Risk of Future Cardiovascular Events following an Acute Coronary Syndrome. Journal of Nutrition, 2009, 139, 507-513.	2.9	38
225	Association between Omega–3 Fatty Acids and Depressive Symptoms among Patients with Established Coronary Artery Disease: Data from the Heart and Soul Study. Psychotherapy and Psychosomatics, 2009, 78, 125-127.	8.8	22
226	Towards Establishing Dietary Reference Intakes for Eicosapentaenoic and Docosahexaenoic Acids. Journal of Nutrition, 2009, 139, 804S-819S.	2.9	280
227	Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction. Cardiovascular Research, 2009, 81, 319-327.	3.8	162
228	Fixation of the Proximal Interphalangeal Arthrodesis with the Use of an Intraosseous Loop of Stainless-Steel Wire Suture. Journal of Foot and Ankle Surgery, 2009, 48, 411-414.	1.0	25
229	The omega-3 index: From biomarker to risk marker to risk factor. Current Atherosclerosis Reports, 2009, 11, 411-417.	4.8	111
230	Assessing the environment for regulatory change for eicosapentaenoic acid and docosahexaenoic acid nutrition labeling. Nutrition Reviews, 2009, 67, 391-397.	5.8	1
231	Inhibitory Effects of Omega-3 PUFAs on Cardiac Fibrosis In Vivo and In Vitro. Journal of Cardiac Failure, 2009, 15, S22.	1.7	0
232	Response to Letter to Editor re: Linoleic acid and coronary heart disease. Prostaglandins Leukotrienes and Essential Fatty Acids, 2009, 80, 77-78.	2.2	2
233	Myocardial infarction does not affect fatty-acid profiles in rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 2009, 81, 411-416.	2.2	7
234	Prescription omega-3 acid ethyl esters plus simvastatin 20 and 80 mg: effects in mixed dyslipidemia. Journal of Clinical Lipidology, 2009, 3, 33-38.	1.5	18

#	Article	IF	CITATIONS
235	Omega-6 Fatty Acids and Risk for Cardiovascular Disease. Circulation, 2009, 119, 902-907.	1.6	653
236	Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nature Reviews Cardiology, 2009, 6, 753-758.	13.7	187
237	Dose-Dependent Effects of <i>n</i> -3 Polyunsaturated Fatty Acids on Platelet Activation in Mildly Hypertriglyceridemic Subjects. Journal of Medicinal Food, 2009, 12, 809-813.	1.5	10
238	Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: The Heart and Soul Study. Atherosclerosis, 2009, 205, 538-543.	0.8	145
239	Omega-3 Augmentation of Sertraline in Treatment of Depression in Patients With Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2009, 302, 1651.	7.4	119
240	Plasma phospholipid fatty acids and CHD in older men: Whitehall study of London civil servants. British Journal of Nutrition, 2009, 102, 279-284.	2.3	47
241	Dietary Omega-6 Polyunsaturated Fatty Acids—Important for Heart Health. Lippincott S Bone and Joint Newsletter, 2009, 35, 1-5.	0.0	8
242	Stearidonic Acidâ€Enriched Soybean Oil Increased the Omegaâ€3 Index, an Emerging Cardiovascular Risk Marker. Lipids, 2008, 43, 805-811.	1.7	151
243	Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults. Current Atherosclerosis Reports, 2008, 10, 503-509.	4.8	172
244	Omega-3 fatty acids, acute coronary syndrome, and sudden death. Current Cardiovascular Risk Reports, 2008, 2, 161-166.	2.0	5
245	Low levels of cellular omega-3 increase the risk of ventricular fibrillation during the acute ischaemic phase of a myocardial infarction. Resuscitation, 2008, 78, 258-264.	3.0	35
246	You Are What You Eat Applies to Fish, Too. Journal of the American Dietetic Association, 2008, 108, 1131-1133.	1.1	8
247	Omega-3 Fatty Acids: The "Japanese―Factor?. Journal of the American College of Cardiology, 2008, 52, 425-427.	2.8	16
248	Omega-6 and trans fatty acids in blood cell membranes: A risk factor for acute coronary syndromes?. American Heart Journal, 2008, 156, 1117-1123.	2.7	76
249	Linoleic acid and coronary heart disease. Prostaglandins Leukotrienes and Essential Fatty Acids, 2008, 79, 169-171.	2.2	57
250	From Lipidomics to Human Health. Prostaglandins Leukotrienes and Essential Fatty Acids, 2008, 79, 83.	2.2	0
251	EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis, 2008, 197, 821-828.	0.8	169
252	Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis, 2008, 197, 12-24.	0.8	470

#	Article	IF	CITATIONS
253	Omega-3 Fatty Acids for Cardioprotection. Mayo Clinic Proceedings, 2008, 83, 324-332.	3.0	218
254	Cardiovascular Risk and α-Linolenic Acid. Circulation, 2008, 118, 323-324.	1.6	12
255	Conclusions and recommendations from the symposium, Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with nâ [°] 3 Fatty Acids. American Journal of Clinical Nutrition, 2008, 87, 2010S-2012S.	4.7	24
256	The omega-3 index as a risk factor for coronary heart disease. American Journal of Clinical Nutrition, 2008, 87, 1997S-2002S.	4.7	244
257	Acute Coronary Syndrome Patients With Depression Have Low Blood Cell Membrane Omega-3 Fatty Acid Levels. Psychosomatic Medicine, 2008, 70, 856-862.	2.0	44
258	Effects of omega-3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects. Thrombosis and Haemostasis, 2008, 100, 634-641.	3.4	64
259	Red Blood Cell Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations Are Positively Associated with Socioeconomic Status in Patients with Established Coronary Artery Disease: Data from the Heart and Soul Study. Journal of Nutrition, 2008, 138, 1135-1140.	2.9	34
260	nâ^'3 Fatty acids and health: DaVinci's code. American Journal of Clinical Nutrition, 2008, 88, 595-596.	4.7	6
261	Clinical Investigation: Determinants of Blood Cell Omega-3 Fatty Acid Content. Open Biomarkers Journal, 2008, 1, 1-6.	0.1	106
262	Effects of omegaâ€3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects. FASEB Journal, 2008, 22, 924.9.	0.5	0
263	Effects of omega-3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects. Thrombosis and Haemostasis, 2008, 100, 634-41.	3.4	21
264	Does treatment with eicosapentaenoic acid prevent major coronary events in patients with hypercholesterolemia?. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 532-533.	3.3	0
265	International recommendations for consumption of long-chain omega-3 fatty acids. Journal of Cardiovascular Medicine, 2007, 8, S50-S52.	1.5	57
266	Cardiovascular risk and the omega-3 index. Journal of Cardiovascular Medicine, 2007, 8, S46-S49.	1.5	39
267	UK Food Standards Agency Workshop Report: the effects of the dietary n-6:n-3 fatty acid ratio on cardiovascular health. British Journal of Nutrition, 2007, 98, 1305-1310.	2.3	98
268	n-3 Fatty acid fortification: opportunities and obstacles. British Journal of Nutrition, 2007, 97, 593-595.	2.3	18
269	Tissue nâ^'3 and nâ^'6 fatty acids and risk for coronary heart disease events. Atherosclerosis, 2007, 193, 1-10.	0.8	237
270	Cardiovascular benefits of omega-3 fatty acids. Cardiovascular Research, 2007, 73, 310-315.	3.8	245

#	Article	IF	CITATIONS
271	Omega-3 fatty acids and cardiovascular disease: A case for omega-3 index as a new risk factor. Pharmacological Research, 2007, 55, 217-223.	7.1	224
272	Pilot study of combined therapy with ω-3 fatty acids and niacin in atherogenic dyslipidemia. Journal of Clinical Lipidology, 2007, 1, 211-217.	1.5	8
273	Comparison of the effects of fish and fish-oil capsules on the n–3 fatty acid content of blood cells and plasma phospholipids. American Journal of Clinical Nutrition, 2007, 86, 1621-1625.	4.7	157
274	Reply to E Vos et al. American Journal of Clinical Nutrition, 2007, 85, 921-922.	4.7	1
275	Blood Omega-3 and Trans Fatty Acids in Middle-Aged Acute Coronary Syndrome Patients. American Journal of Cardiology, 2007, 99, 154-158.	1.6	76
276	Expert Opinion: Omega-3 Fatty Acids and Bleeding—Cause for Concern?. American Journal of Cardiology, 2007, 99, S44-S46.	1.6	171
277	Stearidonic Acid Increases the Red Blood Cell and Heart Eicosapentaenoic Acid Content in Dogs. Lipids, 2007, 42, 325-33.	1.7	35
278	New evidence for the cardiovascular benefits of long chain omega-3 fatty acids. Current Atherosclerosis Reports, 2007, 9, 434-440.	4.8	25
279	The omega-6/omega-3 ratio and cardiovascular disease risk: Uses and abuses. Current Cardiovascular Risk Reports, 2007, 1, 39-45.	2.0	5
280	Comparison of the effects of fish and fish-oil capsules on the n–3 fatty acid content of blood cells and plasma phospholipids. American Journal of Clinical Nutrition, 2007, 86, 1621-1625.	4.7	77
281	Diet and Lifestyle Recommendations Revision 2006. Circulation, 2006, 114, 82-96.	1.6	2,354
282	The effect of high dose simvastatin on, platelet size in patients with, type 2 diabetes mellitus. Platelets, 2006, 17, 292-295.	2.3	2
283	Soy Protein, Isoflavones, and Cardiovascular Health. Circulation, 2006, 113, 1034-1044.	1.6	605
284	Case report of 5 siblings: malnutrition? Rickets? DiGeorge syndrome? Developmental delay?. Nutrition Journal, 2006, 5, 1.	3.4	53
285	The effect of high-dose simvastatin on free fatty acid metabolism in patients with type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2006, 55, 758-762.	3.4	23
286	Reply to IA Brouwer et al. American Journal of Clinical Nutrition, 2006, 84, 1554-1555.	4.7	1
287	nâ^'3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. American Journal of Clinical Nutrition, 2006, 84, 5-17.	4.7	889
288	nâ^'3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. American Journal of Clinical Nutrition, 2006, 83, 1526S-1535S.	4.7	759

#	Article	IF	CITATIONS
289	Why do omega-3 fatty acids lower serum triglycerides?. Current Opinion in Lipidology, 2006, 17, 387-393.	2.7	317
290	The omega-6/omega-3 ratio and cardiovascular disease risk: Uses and abuses. Current Atherosclerosis Reports, 2006, 8, 453-459.	4.8	127
291	Effects of Omega-3 Fatty Acids on Resting Heart Rate, Heart Rate Recovery After Exercise, and Heart Rate Variability in Men With Healed Myocardial Infarctions and Depressed Ejection Fractions. American Journal of Cardiology, 2006, 97, 1127-1130.	1.6	171
292	Tissue Omega-6/Omega-3 Fatty Acid Ratio and Risk for Coronary Artery Disease. American Journal of Cardiology, 2006, 98, 19-26.	1.6	87
293	Effects of Omega-3 Fatty Acids on Heart Rate in Cardiac Transplant Recipientsâ€â€Disclaimer: Saint Luke's Hospital holds a minority interest in OmegaMetrix, LLC, Kansas City, Missouri, a company offering blood omega-3 fatty acid testing American Journal of Cardiology, 2006, 98, 1393-1395.	1.6	53
294	SkelGen: a general tool for structure-basedde novoligand design. Expert Opinion on Drug Discovery, 2006, 1, 179-189.	5.0	22
295	The effect of high-dose simvastatin on triglyceride-rich lipoprotein metabolism in patients with type 2 diabetes mellitus. Journal of Lipid Research, 2006, 47, 193-200.	4.2	34
296	Summary of American Heart Association Diet and Lifestyle Recommendations Revision 2006. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2186-2191.	2.4	295
297	Soy Protein, Isoflavones, and Cardiovascular Health. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1689-1692.	2.4	75
298	Autonomic Function, Omega-3, and Cardiovascular Risk. Chest, 2005, 127, 1088-1091.	0.8	13
299	The impact of age, body mass index, and fish intake on the EPA and DHA content of human erythrocytes. Lipids, 2005, 40, 343-347.	1.7	176
300	Extending the cardiovascular benefits of omega-3 fatty acids. Current Atherosclerosis Reports, 2005, 7, 375-380.	4.8	36
301	Alpha-Linolenic Acid. Circulation, 2005, 111, 2872-2874.	1.6	60
302	Genetic variants of ApoE account for variability of plasma low-density lipoprotein and apolipoprotein B levels in FHBL. Atherosclerosis, 2005, 178, 107-113.	0.8	21
303	Autonomic Function, Omega-3, and Cardiovascular Risk. Chest, 2005, 127, 1088.	0.8	31
304	nâ^'3 Fatty acids and cardiovascular disease. American Journal of Clinical Nutrition, 2004, 79, 166.	4.7	5
305	Triacylglycerol-rich lipoprotein margination: a potential surrogate for whole-body lipoprotein lipase activity and effects of eicosapentaenoic and docosahexaenoic acids. American Journal of Clinical Nutrition, 2004, 80, 45-50.	4.7	37
306	Omega-3 Fatty Acids in Cardiac Biopsies From Heart Transplantation Patients. Circulation, 2004, 110, 1645-1649.	1.6	290

#	Article	IF	CITATIONS
307	Systemic and Forearm Triglyceride Metabolism: Fate of Lipoprotein Lipase-Generated Glycerol and Free Fatty Acids. Diabetes, 2004, 53, 521-527.	0.6	104
308	Clinical trials report. Current Atherosclerosis Reports, 2004, 6, 413-414.	4.8	8
309	Are omega-3 fatty acids the most important nutritional modulators of coronary heart disease risk?. Current Atherosclerosis Reports, 2004, 6, 447-452.	4.8	31
310	The Omega-3 Index: a new risk factor for death from coronary heart disease?. Preventive Medicine, 2004, 39, 212-220.	3.4	909
311	Omega-3 fatty acids, thrombosis and vascular disease. International Congress Series, 2004, 1262, 380-383.	0.2	10
312	Fish oil supplementation: evidence for health benefits Cleveland Clinic Journal of Medicine, 2004, 71, 208-210.	1.3	84
313	Omega-3 Fatty Acids and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 151-152.	2.4	523
314	Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, e20-30.	2.4	390
315	Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. Journal of Lipid Research, 2003, 44, 455-463.	4.2	285
316	Preventive Use of N-3 Fatty Acids. Circulation, 2003, 108, e139; author reply e139.	1.6	1
317	Nocturnal and Postprandial Free Fatty Acid Kinetics in Normal and Type 2 Diabetic Subjects: Effects of Insulin Sensitization Therapy. Diabetes, 2003, 52, 675-681.	0.6	95
318	Cardiovascular disease and long-chain omega-3 fatty acids. Current Opinion in Lipidology, 2003, 14, 9-14.	2.7	69
319	nâ^'3 Long-chain polyunsaturated fatty acids reduce risk of coronary heart disease death: extending the evidence to the elderly. American Journal of Clinical Nutrition, 2003, 77, 279-280.	4.7	31
320	Mean platelet volume as an indicator of platelet activation: methodological issues. Platelets, 2002, 13, 301-306.	2.3	421
321	Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation, 2002, 106, 2747-2757.	1.6	3,043
322	Novel mutations of APOB cause ApoB truncations undetectable in plasma and familial hypobetalipoproteinemia. Human Mutation, 2002, 20, 110-116.	2.5	21
323	EPA, but not DHA, decreases mean platelet volume in normal subjects. Lipids, 2002, 37, 941-946.	1.7	59
324	Massah and Mechanisms. Archives of Internal Medicine, 2002, 162, 1420-1420.	3.8	8

#	Article	IF	CITATIONS
325	Measurement of human chylomicron triglyceride clearance with a labeled commercial lipid emulsion. Lipids, 2001, 36, 115-120.	1.7	31
326	Clinical trial evidence for the cardioprotective effects of omega-3 fatty acids. Current Atherosclerosis Reports, 2001, 3, 174-179.	4.8	31
327	Invited Review: Cardioprotective Effects of ωâ€3 Fatty Acids. Nutrition in Clinical Practice, 2001, 16, 6-12.	2.4	1
328	Invited Review: Lipoprotein Lipase and Triglycerideâ€Rich Lipoprotein Metabolism. Nutrition in Clinical Practice, 2001, 16, 273-279.	2.4	8
329	Effect of atorvastatin on hemorheologic-hemostatic parameters and serum fibrinogen levels in hyperlipidemic patients. American Journal of Cardiology, 2000, 85, 350-353.	1.6	78
330	Omega-3 fatty acids: time for clinical implementation?. American Journal of Cardiology, 2000, 85, 1239-1241.	1.6	25
331	A new method for the study of chylomicron kinetics in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E1258-E1263.	3.5	27
332	Lipid Risk Factor Correlates of Ischemic Heart Disease as Diagnosed by Myocardial Perfusion Scintigraphy. Preventive Cardiology, 2000, 3, 33-39.	1.1	4
333	From Inuit to Implementation: Omega-3 Fatty Acids Come of Age. Mayo Clinic Proceedings, 2000, 75, 607-614.	3.0	77
334	A Randomized, Controlled Trial of the Effects of Remote, Intercessory Prayer on Outcomes in Patients Admitted to the Coronary Care Unit. Archives of Internal Medicine, 1999, 159, 2273-8.	3.8	326
335	Omega-3 fatty acids alter lipoprotein subfraction distributions and the in vitro conversion of very low density lipoproteins to low density lipoproteins. Journal of Nutritional Biochemistry, 1999, 10, 151-158.	4.2	51
336	Nonpharmacologic treatment of hypertriglyceridemia: Focus on fish oils. Clinical Cardiology, 1999, 22, Il-40-Il-43.	1.8	25
337	n-3 fatty acids and serum lipoproteins: human studies. American Journal of Clinical Nutrition, 1997, 65, 1645S-1654S.	4.7	1,005
338	n-3 fatty acids and serum lipoproteins: animal studies. American Journal of Clinical Nutrition, 1997, 65, 1611S-1616S.	4.7	111
339	Influence of n-3 fatty acid supplementation on the endogenous activities of plasma lipases. American Journal of Clinical Nutrition, 1997, 66, 254-260.	4.7	121
340	Safety and efficacy of Omacor in severe hypertriglyceridemia. European Journal of Cardiovascular Prevention and Rehabilitation, 1997, 4, 385-391.	1.5	279
341	Influence of fitness status on very—low-density lipoprotein subfractions and lipoprotein(a) in men and women. Metabolism: Clinical and Experimental, 1997, 46, 1178-1183.	3.4	21
342	n-3 fatty acids and urinary excretion of nitric oxide metabolites in humans. American Journal of Clinical Nutrition, 1997, 65, 459-464.	4.7	118

#	Article	IF	CITATIONS
343	Inhibition of cholesterol absorption with CP-148,623 lowers serum cholesterol in humans*. Clinical Pharmacology and Therapeutics, 1997, 61, 385-389.	4.7	9
344	Inhibiting Cholesterol Absorption with CP-88,818 (β-Tigogenin Cellobioside; Tiqueside): Studies in Normal and Hyperlipidemic Subjects. Journal of Cardiovascular Pharmacology, 1997, 30, 55-60.	1.9	24
345	Exercise training, postprandial hypertriglyceridemia, and LDL subfraction distribution. Medicine and Science in Sports and Exercise, 1997, 29, 986-991.	0.4	62
346	Dietary fish oil and blood lipids. Current Opinion in Lipidology, 1996, 7, 3-7.	2.7	38
347	nâ€3 fatty acids and lipoproteins: Comparison of results from human and animal studies. Lipids, 1996, 31, 243-252.	1.7	268
348	Eicosapentaenoic acid is primarily responsible for hypotriglyceridemic effect of fish oil in humans. Lipids, 1996, 31, S45-S49.	1.7	128
349	Comparison of two scoring systems used to monitor diets in outpatient clinical trials. European Journal of Cardiovascular Prevention and Rehabilitation, 1995, 2, 359-365.	1.5	15
350	Effects of pravastatin with niacin or magnesium on lipid levels and postprandial lipemia. American Journal of Cardiology, 1995, 76, 480-484.	1.6	65
351	Omega-3 Fatty Acids and Health. American Journal of Clinical Nutrition, 1995, 62, 1293.	4.7	0
352	Comparison of effects of probucol versus vitamin E on ex vivo oxidation susceptibility of lipoproteins in hyperlipoproteinemia. American Journal of Cardiology, 1994, 74, 38-42.	1.6	27
353	Modification of lipid-related atherosclerosis risk factors by ω3 fatty acid ethyl esters in hypertriglyceridemic patientsâ~†. Journal of Nutritional Biochemistry, 1993, 4, 706-712.	4.2	35
354	Comparative effects of atenolol versus celiprolol on serum lipids and blood pressure in hyperlipidemic and hypertensive subjects. American Journal of Cardiology, 1993, 72, 1131-1136.	1.6	7
355	Garlic supplementation and lipoprotein oxidation susceptibility. Lipids, 1993, 28, 475-477.	1.7	118
356	The Efficacy of Intensive Dietary Therapy Alone or Combined with Lovastatin in Outpatients with Hypercholesterolemia. New England Journal of Medicine, 1993, 328, 1213-1219.	27.0	288
357	Fish oil reduces postprandial triglyceride concentrations without accelerating lipid-emulsion removal rates. American Journal of Clinical Nutrition, 1993, 58, 68-74.	4.7	100
358	The prevention of atherosclerosis with antioxidants. Clinical Cardiology, 1992, 15, 636-640.	1.8	27
359	Short-term effects of fish oil on human plasma lipid levels. Journal of Nutritional Biochemistry, 1991, 2, 255-259.	4.2	15
360	LCAT inhibitors interfere with the enzymatic determination of cholesterol and triglycerides. Lipids, 1990, 25, 341-343.	1.7	4

#	Article	IF	CITATIONS
361	The combined effects of N-3 fatty acids and aspirin on hemostatic parameters in man. Thrombosis Research, 1990, 57, 517-526.	1.7	47
362	Changes in lipoprotein composition in hypertriglyceridemic patients taking cholesterol-free fish oil supplements. Atherosclerosis, 1990, 82, 237-246.	0.8	24
363	Effects of the ACAT inhibitor CL 277,082 on cholesterol metabolism in humans. Clinical Pharmacology and Therapeutics, 1990, 48, 189-194.	4.7	80
364	The Pharmacological Treatment of Dyslipidemia. Annual Review of Pharmacology and Toxicology, 1989, 29, 265-288.	9.4	20
365	Short-term effects of omega-3 fatty acids on exercise stress test parameters, angina and lipoproteins. Biomedicine and Pharmacotherapy, 1989, 43, 375-379.	5.6	16
366	Management of hypercholesterolemia. Current Opinion in Cardiology, 1989, 4, 705-710.	1.8	0
367	Effects of dietary fish oil on platelet function and plasma lipids in hyperlipoproteinemic and normal subjects. Atherosclerosis, 1988, 73, 13-22.	0.8	72
368	Effects of a Low Saturated Fat, Low Cholesterol Fish Oil Supplement in Hypertriglyceridemic Patients. Annals of Internal Medicine, 1988, 109, 465.	3.9	90
369	Omega-3 fatty acids in hypertriglyceridemic patients: triglycerides vs methyl esters. American Journal of Clinical Nutrition, 1988, 48, 992-997.	4.7	62
370	More on Fish Oil. New England Journal of Medicine, 1987, 316, 624-628.	27.0	7
371	Reduction of Plasma Lipids, Lipoproteins, and Apoproteins by Dietary Fish Oils in Patients with Hypertriglyceridemia. New England Journal of Medicine, 1985, 312, 1210-1216.	27.0	831
372	Dietary omega-3 fatty acids prevent carbohydrate-induced hypertriglyceridemia. Metabolism: Clinical and Experimental, 1984, 33, 1016-1019.	3.4	163
373	The comparative reductions of the plasma lipids and lipoproteins by dietary polyunsaturated fats: Salmon oil versus vegetable oils. Metabolism: Clinical and Experimental, 1983, 32, 179-184.	3.4	431
374	Bile acid ethyl esters. Journal of Chromatography A, 1977, 131, 437-441.	3.7	15
375	Solving Constrained Horn Clauses Using Dependence-Disjoint Expansions. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 278, 3-18.	0.8	Ο