Changsong Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/863734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell, 2022, , .	3.1	8
2	GhARF16â€1 modulates leaf development by transcriptionally regulating the <i>GhKNOX2â€1</i> gene in cotton. Plant Biotechnology Journal, 2021, 19, 548-562.	4.1	15
3	Genome-wide characterization of the WAK gene family and expression analysis under plant hormone treatment in cotton. BMC Genomics, 2021, 22, 85.	1.2	23
4	Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nature Plants, 2021, 7, 774-786.	4.7	65
5	The plasmaâ€membrane polyamine transporter PUT3 is regulated by the Na ⁺ /H ⁺ antiporter SOS1 and protein kinase SOS2. New Phytologist, 2020, 226, 785-797.	3.5	36
6	A genome-wide identification of the BLH gene family reveals BLH1 involved in cotton fiber development. Journal of Cotton Research, 2020, 3, .	1.0	5
7	Patterns of presence-absence variants in Upland cotton. Science China Life Sciences, 2020, 63, 1600-1603.	2.3	1
8	Genome-wide comparative analysis of RNA-binding Glycine-rich protein family genes between Gossypium arboreum and Gossypium raimondii. PLoS ONE, 2019, 14, e0218938.	1.1	16
9	The genome of broomcorn millet. Nature Communications, 2019, 10, 436.	5.8	130
10	Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6058-6063.	3.3	284
11	A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research, 2017, 27, 1327-1340.	5.7	170
12	Genome-wide identification, phylogeny, and expression analysis of pectin methylesterases reveal their major role in cotton fiber development. BMC Genomics, 2016, 17, 1000.	1.2	42
13	Fine mapping and candidate gene analysis of the dominant glandless gene Gl 2 e in cotton (Gossypium) Tj ETQq1	1,0,7843 1.8	14 rgBT /Cve
14	Comprehensive analysis of NAC transcription factors in diploid Gossypium: sequence conservation and expression analysis uncover their roles during fiber development. Science China Life Sciences, 2016, 59, 142-153.	2.3	24
15	Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Science China Life Sciences, 2016, 59, 164-171.	2.3	78
16	Development of chromosome-specific markers with high polymorphism for allotetraploid cotton based on genome-wide characterization of simple sequence repeats in diploid cottons (Gossypium) Tj ETQq0 0 0	rgBI /Ove	rlæck 10 Tf 5
17	Genome sequence of cultivated Upland cotton (GossypiumÂhirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33, 524-530.	9.4	1,064

18 Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46, 567-572. 9.4 883

CHANGSONG ZOU

#	Article	IF	CITATIONS
19	Genomeâ€ <scp>W</scp> ide Analysis of the <i>Sus</i> Gene Family in Cotton. Journal of Integrative Plant Biology, 2013, 55, 643-653.	4.1	41
20	The role of WRKY transcription factors in plant abiotic stresses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 120-128.	0.9	717
21	The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44, 1098-1103.	9.4	935
22	Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. Journal of Microbiology, 2010, 48, 460-466.	1.3	176
23	Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. Journal of Experimental Botany, 2010, 61, 3901-3914.	2.4	166
24	Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biology and Biochemistry, 2007, 39, 2567-2575.	4.2	201