
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8637169/publications.pdf Version: 2024-02-01

Ροςλαίο Ατάβλι

#	Article	IF	CITATIONS
1	Arbuscular mycorrhizal fungi from acidic soils favors production of tomatoes and lycopene concentration. Journal of the Science of Food and Agriculture, 2022, 102, 2352-2358.	1.7	6
2	Mycorrhiza-Induced Resistance against Foliar Pathogens Is Uncoupled of Nutritional Effects under Different Light Intensities. Journal of Fungi (Basel, Switzerland), 2021, 7, 402.	1.5	21
3	Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza, 2021, 31, 559-576.	1.3	27
4	Effect of Arbuscular Mycorrhizal Colonization on Cadmium-Mediated Oxidative Stress in Glycine max (L.) Merr Plants, 2020, 9, 108.	1.6	28
5	Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Science, 2019, 280, 441-447.	1.7	124
6	Functional diversity of ectomycorrhizal fungal communities is reduced by trace element contamination. Soil Biology and Biochemistry, 2018, 121, 202-211.	4.2	17
7	Root metabolic plasticity underlies functional diversity in mycorrhizaâ€enhanced stress tolerance in tomato. New Phytologist, 2018, 220, 1322-1336.	3.5	107
8	Mycorrhizosphere Interactions to Improve a Sustainable Production of Legumes. , 2017, , 199-225.		7
9	Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities. Molecular Ecology, 2017, 26, 6948-6959.	2.0	55
10	Symbiotic association between golden berry (Physalis peruviana) and arbuscular mycorrhizal fungi in heavy metal-contaminated soil. Journal of Plant Protection Research, 2017, 57, 173-184.	1.0	24
11	The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance. Plant Science, 2016, 253, 68-76.	1.7	44
12	Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under wellâ€watered and drought conditions. Plant, Cell and Environment, 2016, 39, 2498-2514.	2.8	59
13	Spring to autumn changes in the arbuscular mycorrhizal fungal community composition in the different propagule types associated to a Mediterranean shrubland. Plant and Soil, 2016, 408, 107-120.	1.8	29
14	Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland. Mycorrhiza, 2016, 26, 489-496.	1.3	37
15	Interactive effect between Cuâ€adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of <i>Oenothera picensis</i> growing in Cuâ€polluted soils. Journal of Plant Nutrition and Soil Science, 2015, 178, 126-135.	1.1	52
16	Acaulospora baetica, a new arbuscular mycorrhizal fungal species from two mountain ranges in AndalucÃa (Spain). Nova Hedwigia, 2015, 101, 463-474.	0.2	4
17	The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environmental Microbiology, 2015, 17, 2882-2895.	1.8	117
18	Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 2015, 205, 1431-1436.	3.5	331

#	Article	IF	CITATIONS
19	Characterization and management of autochthonous bacterial strains from semiarid soils of Spain and their interactions with fermented agrowastes to improve drought tolerance in native shrub species. Applied Soil Ecology, 2015, 96, 306-318.	2.1	13
20	The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community. Oecologia, 2014, 176, 1075-1086.	0.9	48
21	Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science, 2014, 5, 547.	1.7	120
22	Mycorrhizosphere: The Role of PGPR. Soil Biology, 2014, , 107-143.	0.6	4
23	Acaulospora viridis, a new species in the Glomeromycetes from two mountain ranges in AndalucÃa (Spain). Nova Hedwigia, 2014, 99, 71-82.	0.2	6
24	Life-history strategies of arbuscular mycorrhizal fungi determine succession into roots of Rosmarinus officinalis L., a characteristic woody perennial plant species from Mediterranean ecosystems. Plant and Soil, 2014, 379, 247-260.	1.8	20
25	Differential Activity of Autochthonous Bacteria in Controlling Drought Stress in Native Lavandula and Salvia Plants Species Under Drought Conditions in Natural Arid Soil. Microbial Ecology, 2014, 67, 410-420.	1.4	153
26	Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato. Biocontrol Science and Technology, 2014, 24, 1122-1136.	0.5	26
27	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	0.9	78
28	Transcriptional regulation of host transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology and Biochemistry, 2014, 75, 1-8.	2.8	68
29	Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. Journal of Environmental Management, 2014, 134, 1-7.	3.8	69
30	The influence of environmental degradation processes on the arbuscular mycorrhizal fungal community associated with yew (Taxus baccata L.), an endangered tree species from Mediterranean ecosystems of Southeast Spain. Plant and Soil, 2013, 370, 355-366.	1.8	10
31	Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant and Soil, 2013, 370, 175-185.	1.8	43
32	Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology and Biochemistry, 2013, 57, 925-928.	4.2	110
33	Acaulospora pustulata and Acaulospora tortuosa , two new species in the Glomeromycota from Sierra Nevada National Park (southern Spain). Nova Hedwigia, 2013, 97, 305-319.	0.2	19
34	Septoglomus altomontanum, a new arbuscular mycorrhizal fungus from mountainous and alpine areas in AndalucÃa (southern Spain). IMA Fungus, 2013, 4, 243-249.	1.7	14
35	Root Allies: Arbuscular Mycorrhizal Fungi Help Plants to Cope with Biotic Stresses. Soil Biology, 2013, , 289-307.	0.6	28
36	The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.	3.5	305

#	Article	IF	CITATIONS
37	Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agricultural and Food Science, 2012, 21, 2-11.	0.3	28
38	Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Applied Soil Ecology, 2011, 48, 117-124.	2.1	84
39	GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genetics and Biology, 2011, 48, 1044-1055.	0.9	143
40	Influence of two bacterial isolates from degraded and non-degraded soils and arbuscular mycorrhizae fungi isolated from semi-arid zone on the growth of Trifolium repens under drought conditions: Mechanisms related to bacterial effectiveness. European Journal of Soil Biology, 2011, 47, 303-309.	1.4	48
41	Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. Journal of Arid Environments, 2011, 75, 1292-1301.	1.2	175
42	Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology, 2011, 168, 1031-1037.	1.6	181
43	The application of a treated sugar beet waste residue to soil modifies the responses of mycorrhizal and non mycorrhizal lettuce plants to drought stress. Plant and Soil, 2011, 346, 153-166.	1.8	19
44	Brevibacillus, Arbuscular Mycorrhizae and Remediation of Metal Toxicity in Agricultural Soils. Soil Biology, 2011, , 235-258.	0.6	5
45	Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Clomus intraradices. Current Genetics, 2010, 56, 265-274.	0.8	73
46	GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza, 2010, 20, 137-146.	1.3	76
47	Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 2010, 61, 2589-2601.	2.4	238
48	<i>Entrophospora nevadensis</i> , a new arbuscular mycorrhizal fungus from Sierra Nevada National Park (southeastern Spain). Mycologia, 2010, 102, 624-632.	0.8	38
49	Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms. , 2010, , 193-207.		89
50	Mycorrhizosphere Interactions for Legume Improvement. , 2010, , 237-271.		32
51	Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. Journal of Plant Physiology, 2010, 167, 614-619.	1.6	66
52	Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochemistry Reviews, 2009, 8, 551-559.	3.1	89
53	Stimulation of Plant Growth and Drought Tolerance by Native Microorganisms (AM Fungi and) Tj ETQq1 1 0.7843 Growth Regulation, 2009, 28, 115-124.	814 rgBT / 2.8	Overlock 10 354
54	<i>GintPDX1</i> encodes a protein involved in vitamin B6 biosynthesis that is upâ€regulated by oxidative stress in the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2009, 184, 682-693.	3.5	53

#	Article	IF	CITATIONS
55	GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genetics and Biology, 2009, 46, 94-103.	0.9	72
56	Mechanisms Underlying Heavy Metal Tolerance in Arbuscular Mycorrhizas. , 2009, , 107-122.		37
57	Priming Plant Defence Against Pathogens by Arbuscular Mycorrhizal Fungi. , 2009, , 123-135.		58
58	Differential Effects of a Bacillus megaterium Strain on Lactuca sativa Plant Growth Depending on the Origin of the Arbuscular Mycorrhizal Fungus Coinoculated: Physiologic and Biochemical Traits. Journal of Plant Growth Regulation, 2008, 27, 10-18.	2.8	75
59	Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria. , 2008, , 351-371.		10
60	Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . Canadian Journal of Microbiology, 2008, 54, 103-110.	0.8	158
61	Arbuscular-Mycorrhizal Contributes to Alleviation of Salt Damage in Cassava Clones. Journal of Plant Nutrition, 2008, 31, 959-971.	0.9	22
62	Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia, 2008, 100, 296-305.	0.8	31
63	<i>Otospora bareai</i> , a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia, 2008, 100, 296-305.	0.8	57
64	Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis. Physiologia Plantarum, 2007, 129, 737-746.	2.6	36
65	Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 2007, 10, 393-398.	3.5	919
66	GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza, 2007, 17, 327-335.	1.3	98
67	The growth-enhancement of clover by Aspergillus-treated sugar beet waste and Glomus mosseae inoculation in Zn contaminated soil. Applied Soil Ecology, 2006, 33, 87-98.	2.1	49
68	GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genetics and Biology, 2006, 43, 102-110.	0.9	175
69	Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathology, 2006, 55, 705-713.	1.2	76
70	Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytologist, 2005, 168, 179-188.	3.5	112
71	Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or Phytophthora parasitica-infected plants. Mycorrhiza, 2005, 15, 489-496.	1.3	33
72	Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 2005, 56, 1761-1778.	2.4	935

#	Article	IF	CITATIONS
73	Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology, 2005, 42, 130-140.	0.9	172
74	Differential Morphogenesis of the Extraradical Mycelium of an Arbuscular Mycorrhizal Fungus Grown Monoxenically on Spatially Heterogeneous Culture Media. Mycologia, 2004, 96, 452.	0.8	28
75	Genomics of Arbuscular Mycorrhizal Fungi. Applied Mycology and Biotechnology, 2004, 4, 379-403.	0.3	6
76	Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiology Letters, 2004, 241, 265-270.	0.7	72
77	Effect of Mycorrhizal Inoculation on Nutrient Acquisition, Gas Exchange, and Nitrate Reductase Activity of Two Mediterranean-Autochthonous Shrub Species Under Drought Stress. Journal of Plant Nutrition, 2004, 27, 57-74.	0.9	29
78	Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Applied Soil Ecology, 2004, 25, 123-133.	2.1	83
79	Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Applied Soil Ecology, 2004, 26, 11-19.	2.1	74
80	Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia, 2004, 96, 452-462.	0.8	50
81	Photosynthetic and Transpiration Rates of Olea europaea subsp. sylvestris and Rhamnus lycioides as Affected by Water Deficit and Mycorrhiza. Biologia Plantarum, 2003, 46, 637-639.	1.9	37
82	Alteration in Rhizosphere Soil Properties of Afforested Rhamnus lycioides Seedlings in Short-Term Response to Mycorrhizal Inoculation with Glomus intraradices and Organic Amendment. Environmental Management, 2003, 31, 412-420.	1.2	28
83	Medium-term effects of mycorrhizal inoculation and composted municipal waste addition on the establishment of two Mediterranean shrub species under semiarid field conditions. Agriculture, Ecosystems and Environment, 2003, 97, 95-105.	2.5	25
84	Analysis of the mycorrhizal potential in the rhizosphere of representative plant species from desertification-threatened Mediterranean shrublands. Applied Soil Ecology, 2003, 22, 29-37.	2.1	134
85	The Role of Relict Vegetation in Maintaining Physical, Chemical, and Biological Properties in an Abandoned Stipa -Grass Agroecosystem. Arid Land Research and Management, 2003, 17, 103-111.	0.6	19
86	Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants. Journal of Experimental Botany, 2002, 53, 1683-1687.	2.4	48
87	Identification of a cDNA from the Arbuscular Mycorrhizal Fungus Glomus intraradices that is Expressed During Mycorrhizal Symbiosis and Up-Regulated by N Fertilization. Molecular Plant-Microbe Interactions, 2002, 15, 360-367.	1.4	14
88	Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 2002, 53, 525-534.	2.4	383
89	Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composted residue application on transplant performance and mycorrhizal developments in a desertified soil. Biology and Fertility of Soils, 2002, 36, 170-175.	2.3	24
90	Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant and Soil, 2002, 244, 231-237.	1.8	37

#	Article	IF	CITATIONS
91	Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 2002, 81, 343-351.	0.7	355
92	Management of Indigenous Plant-Microbe Symbioses Aids Restoration of Desertified Ecosystems. Applied and Environmental Microbiology, 2001, 67, 495-498.	1.4	431
93	Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytologist, 2001, 151, 493-502.	3.5	151
94	Molecular approaches to study plasma membrane H+-ATPases in arbuscular mycorrhizas. Plant and Soil, 2000, 226, 219-225.	1.8	10
95	The plasma membrane H + -ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Current Genetics, 2000, 37, 112-118.	0.8	72
96	Alterations in the plasma membrane polypeptide pattern of tomato roots (Lycopersicon esculentum) during the development of arbuscular mycorrhiza. Journal of Experimental Botany, 2000, 51, 747-754.	2.4	23
97	Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically) Tj ETQq1 1 0.7843 mycorrhizal fungi. Plant Science, 2000, 159, 57-63.	14 rgBT / 1.7	Overlock 10 87
98	Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum,) Tj ETQq0 0 0 rgE rhizosphere of maize plants. Applied Soil Ecology, 2000, 15, 261-272.	3T /Overlo 2.1	ck 10 Tf 50 4 314
99	Diversity of Arbuscular Mycorrhizal Fungus Populations in Heavy-Metal-Contaminated Soils. Applied and Environmental Microbiology, 1999, 65, 718-723.	1.4	280
100	Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Applied Soil Ecology, 1999, 11, 261-269.	2.1	120
101	β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Science, 1999, 141, 149-157.	1.7	145
102	Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytologist, 1998, 139, 375-388.	3.5	166
103	Soluble and membrane symbiosis-related polypeptides associated with the development of arbuscular mycorrhizas in tomato (Lycopersicon esculentum). New Phytologist, 1998, 140, 135-143.	3.5	26
104	Architecture and Developmental Dynamics of the External Mycelium of the Arbuscular Mycorrhizal Fungus Glomus intraradices Grown under Monoxenic Conditions. Mycologia, 1998, 90, 52.	0.8	66
105	Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. Journal of Experimental Botany, 1998, 49, 1729-1739.	2.4	17
106	Changes in the rhizospheric pH induced by arbuscular mycorrhiza formation in onion (Allium cepa L.). Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1997, 160, 333-339.	0.4	54
107	Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scientia Horticulturae, 1997, 68, 1-24.	1.7	228
108	Beneficial effect of arbuscular mycorrhizas on acclimatization of micropropagated cassava plantlets. Scientia Horticulturae, 1997, 72, 63-71.	1.7	29

#	Article	IF	CITATIONS
109	Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza, 1997, 6, 457-464.	1.3	567
110	Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nitrate-fertilized peas (Pisum sativum L.). Biology and Fertility of Soils, 1997, 24, 164-168.	2.3	34
111	ATPase activities of root microsomes from mycorrhizal sunflower (Helianthus annuus) and onion () Tj ETQq1 1 0.	.784314 r 3.5	∙g₿Ţ /Overlo
112	Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation. Applied Soil Ecology, 1996, 4, 15-21.	2.1	27
113	Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil, 1996, 180, 241-249.	1.8	186
114	Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytologist, 1996, 133, 273-280.	3.5	205
115	Effect of a genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa. New Phytologist, 1996, 134, 361-369.	3.5	35
116	Arbuscular mycorrhizal inoculation enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. Agronomy for Sustainable Development, 1996, 16, 647-652.	0.8	29
117	Induction of new chitinase isoforms in tomato roots during interactions with Glomus mosseae and/or Phytophthora nicotianae var parasitica. Agronomy for Sustainable Development, 1996, 16, 689-697.	0.8	53
118	Effect of arbuscular mycorrhiza on the growth and development of micropropagated Annona cherimola plants. Agricultural and Food Science, 1994, 3, 281-288.	0.3	7
119	21 Vesicular-arbuscular Mycorrhizal Fungi in Nitrogen-fixing Systems. Methods in Microbiology, 1992, 24, 391-416.	0.4	54
120	Further studies on the influence of mycorrhizae on growth and development of micropropagated avocado plants. Agronomy for Sustainable Development, 1992, 12, 837-840.	0.8	41
121	Competition between introduced and indigenous mycorrhizal fungi (Glomus spp.) for root colonization of leek. Agriculture, Ecosystems and Environment, 1990, 29, 355-359.	2.5	6
122	Time-course of N2-fixation (15N) in the field by clover growing alone or in mixture with ryegrass to improve pasture productivity, and inoculated with vesicular-arbuscular mycorrhizal fungi. New Phytologist, 1989, 112, 399-404.	3.5	42
123	Quantification of three vesicular-arbuscular mycorrhizal fungi (Glomus spp) in roots of leek (Allium) Tj ETQq1 1 0. Biology and Biochemistry, 1989, 21, 519-522.	784314 r 4.2	gBT /Overloo 29
124	Competition between three species of Glomus used as spatially separated introduced and indigenous mycorrhizal inocula for leek (Allium porrum L.). New Phytologist, 1988, 110, 207-215.	3.5	111
125	Variation in certain isozymes amongst different geographical isolates of the vesicular-arbuscular mycorrhizal fungi Glomus clarum, Glomus monosporum and Glomus mosseae. Soil Biology and Biochemistry, 1988, 20, 51-59.	4.2	55
126	VESICULARâ€ARBUSCULAR MYCORRHIZA IMPROVE BOTH SYMBIOTIC N 2 FIXATION AND N UPTAKE FROM SOIL AS ASSESSED WITH A 15 N TECHNIQUE UNDER FIELD CONDITIONS. New Phytologist, 1987, 106, 717-725.	3.5	134

#	Article	IF	CITATIONS
127	Effect of soil micro-organisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Transactions of the British Mycological Society, 1986, 86, 337-340.	0.6	83
128	Assessment of field situations for the feasibility of vesicular-arbuscular mycorrhizal inoculation, using a forage legume as test plant. Agriculture, Ecosystems and Environment, 1986, 15, 241-252.	2.5	11
129	Effect of vesicular-arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria on growth and nutrition of soybean in a neutral-calcareous soil amended with32P-45Ca-tricalcium phosphate. Plant and Soil, 1986, 96, 3-15.	1.8	60
130	Effect of soil micro-organisms on formation of vesicular-arbuscular mycorrhizas. Transactions of the British Mycological Society, 1985, 84, 536-537.	0.6	53
131	Mycorrhizas and their Significance in Nodulating Nitrogen-Fixing Plants. Advances in Agronomy, 1983, , 1-54.	2.4	188
132	Effectiveness of Rhizobium and VA Mycorrhiza in the introduction of Hedysarum coronarium in a new habitat. Agriculture and Environment, 1982, 7, 199-206.	0.5	13
133	The effect of season on VA mycorrhiza of the almond tree and of phosphate fertilization and species of endophyte on its mycorrhizal dependency. Plant and Soil, 1982, 68, 361-367.	1.8	6
134	Production of Plant Growth-Regulating Substances by the Vesicular-Arbuscular Mycorrhizal Fungus <i>Glomus mosseae</i> . Applied and Environmental Microbiology, 1982, 43, 810-813.	1.4	132
135	Field inoculation of Medicago with V-A mycorrhiza and Rhizobium in phosphate-fixing agricultural soil. Soil Biology and Biochemistry, 1981, 13, 19-22.	4.2	43
136	Effects of ethrel on the formation and responses to VA mycorrhiza in Medicago and Triticum. Plant and Soil, 1981, 60, 461-468.	1.8	31
137	Effects of introduced and indigenous VA mycorrhizal fungi on nodulation, growth and nutrition ofMedicago sativa in phosphate-fixing soils as affected by P fertilizers. Plant and Soil, 1980, 54, 283-296.	1.8	68
138	EFFECTS OF PLANT HORMONES PRESENT IN BACTERIAL CULTURES ON THE FORMATION AND RESPONSES TO VA ENDOMYCORRHIZA. New Phytologist, 1978, 80, 359-364.	3.5	101
139	Synthesis of auxins, gibberellins and cytokinins byAzotobacter vinelandii andAzotobacter beijerinckii related to effects produced on tomato plants. Plant and Soil, 1975, 43, 609-619.	1.8	98