Doreen S Boyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	4.6	108
2	Making (remote) sense of lianas. Journal of Ecology, 2022, 110, 498-513.	1.9	5
3	Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands. Remote Sensing, 2022, 14, 444.	1.8	8
4	Citizen science for Earth Observation (Citizens4EO): understanding current use in the UK. International Journal of Remote Sensing, 2022, 43, 2965-2985.	1.3	2
5	Urban growth analysis and simulations using cellular automata and geo-informatics: comparison between Almaty and Astana in Kazakhstan. Geocarto International, 2021, 36, 520-539.	1.7	21
6	The mechanical stability of the world's tallest broadleaf trees. Biotropica, 2021, 53, 110-120.	0.8	20
7	Modern slavery, environmental degradation and climate change: Fisheries, field, forests and factories. Environment and Planning E, Nature and Space, 2021, 4, 191-207.	1.6	20
8	Growing evidence of the interconnections between modern slavery, environmental degradation, and climate change. One Earth, 2021, 4, 181-191.	3.6	12
9	Remote sensing liana infestation in an aseasonal tropical forest: addressing mismatch in spatial units of analyses. Remote Sensing in Ecology and Conservation, 2021, 7, 397-410.	2.2	8
10	Informing action for United Nations SDG target 8.7 and interdependent SDGs: Examining modern slavery from space. Humanities and Social Sciences Communications, 2021, 8, .	1.3	4
11	A Multiâ€Method Approach to Prioritize Locations of Labor Exploitation for Groundâ€Based Interventions. Production and Operations Management, 2021, 30, 4396-4411.	2.1	16
12	Disentangling controls on animal abundance: Prey availability, thermal habitat, and microhabitat structure. Ecology and Evolution, 2021, 11, 11414-11424.	0.8	1
13	Detection of Spatial and Temporal Patterns of Liana Infestation Using Satellite-Derived Imagery. Remote Sensing, 2021, 13, 2774.	1.8	2
14	Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record. Remote Sensing of Environment, 2021, 261, 112470.	4.6	32
15	Monitoring high spatiotemporal water dynamics by fusing MODIS, Landsat, water occurrence data and DEM. Remote Sensing of Environment, 2021, 265, 112680.	4.6	33
16	Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma, 2021, 403, 115173.	2.3	17
17	Developing A System to Map and Monitor Beached Sargassum on the Caribbean Coast of Mexico. , 2021, , .		0
18	Automated classification metrics for energy modelling of residential buildings in the UK with <i>open</i> algorithms. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 45-64.	1.0	8

#	Article	IF	CITATIONS
19	Night-time lights are more strongly related to urban building volume than to urban area. Remote Sensing Letters, 2020, 11, 29-36.	0.6	12
20	Use of Surface Motion Characteristics Determined by InSAR to Assess Peatland Condition. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2018JG004953.	1.3	20
21	SFSDAF: An enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion. Remote Sensing of Environment, 2020, 237, 111537.	4.6	86
22	Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 141-152.	4.9	36
23	Evaluating the potential of fullâ€waveform lidar for mapping panâ€ŧropical tree species richness. Global Ecology and Biogeography, 2020, 29, 1799-1816.	2.7	31
24	Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, 2020, 369, 838-841.	6.0	68
25	On the Reliable Generation of 3D City Models from Open Data. Urban Science, 2020, 4, 47.	1.1	21
26	Investigating the Potential of Radar Interferometry for Monitoring Rural Artisanal Cobalt Mines in the Democratic Republic of the Congo. Sustainability, 2020, 12, 9834.	1.6	8
27	Remote sensing of fish-processing in the Sundarbans Reserve Forest, Bangladesh: an insight into the modern slavery-environment nexus in the coastal fringe. Maritime Studies, 2020, 19, 429-444.	1.1	8
28	India's contribution to mitigating the impacts of climate change through vegetation management. Tropical Ecology, 2020, 61, 168-171.	0.6	8
29	Understanding the coâ€occurrence of tree loss and modern slavery to improve efficacy of conservation actions and policies. Conservation Science and Practice, 2020, 2, e183.	0.9	10
30	Precipitation regionalization, anomalies and drought occurrence in the Yucatan Peninsula, Mexico. International Journal of Climatology, 2020, 40, 4541-4555.	1.5	26
31	Community perception, adaptation and resilience to extreme weather in the Yucatan Peninsula, Mexico. Regional Environmental Change, 2020, 20, 1.	1.4	25
32	Integrating Biodiversity, Remote Sensing, and Auxiliary Information for the Study of Ecosystem Functioning and Conservation at Large Spatial Scales. , 2020, , 449-484.		4
33	Applications in Remote Sensing to Forest Ecology and Management. One Earth, 2020, 2, 405-412.	3.6	182
34	Multi-Criteria Decision Analysis to Prioritize Locations of Labor Exploitation for Intervention. Proceedings - Academy of Management, 2020, 2020, 20248.	0.0	1
35	To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16155-16158.	3.3	96
36	Modelling Urban Housing Stocks for Building Energy Simulation using CityGML EnergyADE. ISPRS International Journal of Geo-Information, 2019, 8, 163.	1.4	22

#	Article	IF	CITATIONS
37	Measuring River Wetted Width From Remotely Sensed Imagery at the Subpixel Scale With a Deep Convolutional Neural Network. Water Resources Research, 2019, 55, 5631-5649.	1.7	51
38	The World's Tallest Tropical Tree in Three Dimensions. Frontiers in Forests and Global Change, 2019, 2, .	1.0	38
39	Earth Observation and Machine Learning to Meet Sustainable Development Goal 8.7: Mapping Sites Associated with Slavery from Space. Remote Sensing, 2019, 11, 266.	1.8	32
40	Exploring temporality in socio-ecological resilience through experiences of the 2015–16 El Niño across the Tropics. Global Environmental Change, 2019, 55, 1-14.	3.6	30
41	Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016. Remote Sensing of Environment, 2019, 224, 74-91.	4.6	52
42	Aging brick kilns in the asian brick belt using a long time series of Landsat sensor data to inform the study of modern day slavery. , 2019, , .		3
43	Predicting residential building age from map data. Computers, Environment and Urban Systems, 2019, 73, 56-67.	3.3	33
44	A view from above: Unmanned aerial vehicles (<scp>UAV</scp> s) provide a new tool for assessing liana infestation in tropical forest canopies. Journal of Applied Ecology, 2019, 56, 902-912.	1.9	36
45	Slavery from Space: Demonstrating the role for satellite remote sensing to inform evidence-based action related to UN SDG number 8. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142, 380-388.	4.9	58
46	Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sensing of Environment, 2018, 205, 338-351.	4.6	90
47	UAVs in pursuit of plant conservation - Real world experiences. Ecological Informatics, 2018, 47, 2-9.	2.3	42
48	Tropical Peatland Vegetation Structure and Biomass: Optimal Exploitation of Airborne Laser Scanning. Remote Sensing, 2018, 10, 671.	1.8	12
49	Models of upland species' distributions are improved by accounting for geodiversity. Landscape Ecology, 2018, 33, 2071-2087.	1.9	33
50	Remote sensing restores predictability of ectotherm body temperature in the world's forests. Global Ecology and Biogeography, 2018, 27, 1412-1425.	2.7	7
51	Refining area of occupancy to address the modifiable areal unit problem in ecology and conservation. Conservation Biology, 2018, 32, 1278-1289.	2.4	11
52	Increasing the Accuracy of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information Inferred from the Contributed Data. ISPRS International Journal of Geo-Information, 2018, 7, 80.	1.4	21
53	Long-Term Peatland Condition Assessment via Surface Motion Monitoring Using the ISBAS DInSAR Technique over the Flow Country, Scotland. Remote Sensing, 2018, 10, 1103.	1.8	40
54	Analysing Slavery through Satellite Technology: How Remote Sensing Could Revolutionise Data Collection to Help End Modern Slavery. Journal of Modern Slavery, 2018, 4, 169-199.	0.3	13

#	Article	IF	CITATIONS
55	Modelling native and alien vascular plant species richness: At which scales is geodiversity most relevant?. Global Ecology and Biogeography, 2017, 26, 763-776.	2.7	81
56	Using mixed objects in the training of object-based image classifications. Remote Sensing of Environment, 2017, 190, 188-197.	4.6	46
57	Remote Sensing in Ecology and Conservation: three years on. Remote Sensing in Ecology and Conservation, 2017, 3, 53-56.	2.2	20
58	Field spectroscopy and radiative transfer modelling to assess impacts of petroleum pollution on biophysical and biochemical parameters of the Amazon rainforest. Environmental Earth Sciences, 2017, 76, 1.	1.3	28
59	Identifying species from the air: UAVs and the very high resolution challenge for plant conservation. PLoS ONE, 2017, 12, e0188714.	1.1	97
60	Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach. Remote Sensing, 2016, 8, 88.	1.8	89
61	Earth observation archives for plant conservation: 50Âyears monitoring of Itigi‣umbu thicket. Remote Sensing in Ecology and Conservation, 2016, 2, 95-106.	2.2	4
62	Satellite remote sensing to monitor species diversity: potential and pitfalls. Remote Sensing in Ecology and Conservation, 2016, 2, 25-36.	2.2	137
63	Integrating User Needs on Misclassification Error Sensitivity into Image Segmentation Quality Assessment. Photogrammetric Engineering and Remote Sensing, 2015, 81, 451-459.	0.3	7
64	Airborne LiDAR for the Detection of Archaeological Vegetation Marks Using Biomass as a Proxy. Remote Sensing, 2015, 7, 1594-1618.	1.8	15
65	Innovative Technologies for Terrestrial Remote Sensing. Remote Sensing, 2015, 7, 4968-4972.	1.8	1
66	Accurate Attribute Mapping from Volunteered Geographic Information: Issues of Volunteer Quantity and Quality. Cartographic Journal, 2015, 52, 336-344.	0.8	35
67	Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environmental Pollution, 2015, 205, 225-239.	3.7	124
68	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	5.8	169
69	Using air photos to parameterize landscape predictors of channel wetted width. Earth Surface Processes and Landforms, 2014, 39, 605-613.	1.2	5
70	Forest disturbance and regeneration: a mosaic of discrete gap dynamics and open matrix regimes?. Journal of Vegetation Science, 2014, 25, 1341-1354.	1.1	29
71	Volunteered geographic information. Geography, 2014, 99, 157-160.	0.2	6
72	Hyperspectral detection dynamics of archaeological vegetation marks and enhancement using full waveform LiDAR data. , 2013, , .		0

#	Article	IF	CITATIONS
73	Assessing the Accuracy of Volunteered Geographic Information arising from Multiple Contributors to an Internet Based Collaborative Project. Transactions in GIS, 2013, 17, 847-860.	1.0	97
74	Landscapeâ€scale forest disturbance regimes in southern Peruvian Amazonia. Ecological Applications, 2013, 23, 1588-1602.	1.8	26
75	Using Volunteered Data in Land Cover Map Validation: Mapping West African Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1305-1312.	2.3	54
76	Exploring the Potential for Automatic Extraction of Vegetation Phenological Metrics from Traffic Webcams. Remote Sensing, 2013, 5, 2200-2218.	1.8	21
77	Using volunteered data in land cover map validation: Mapping tropical forests across West Africa. , 2012, , .		6
78	Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70, 66-77.	4.9	167
79	Evaluation of Envisat MERIS Terrestrial Chlorophyll Index-Based Models for the Estimation of Terrestrial Gross Primary Productivity. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 457-461.	1.4	17
80	An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics, 2011, 6, 25-36.	2.3	102
81	Relationship between canopy height and Landsat ETM+ response in lowland Amazonian rainforest. Remote Sensing Letters, 2011, 2, 203-212.	0.6	15
82	Phenology of vegetation in Southern England from Envisat MERIS terrestrial chlorophyll index (MTCI) data. International Journal of Remote Sensing, 2011, 32, 8421-8447.	1.3	38
83	Estimating terrestrial gross primary productivity with the Envisat Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI). , 2010, , .		2
84	Remote sensing in physical geography: a twenty-first-century perspective. Progress in Physical Geography, 2009, 33, 451-456.	1.4	16
85	Mapping a specific class with an ensemble of classifiers. International Journal of Remote Sensing, 2007, 28, 1733-1746.	1.3	79
86	Mapping specific habitats from remotely sensed imagery: Support vector machine and support vector data description based classification of coastal saltmarsh habitats. Ecological Informatics, 2007, 2, 83-88.	2.3	87
87	One-Class Classification for Mapping a Specific Land-Cover Class: SVDD Classification of Fenland. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 1061-1073.	2.7	140
88	Mapping a specific class for priority habitats monitoring from satellite sensor data. International Journal of Remote Sensing, 2006, 27, 2631-2644.	1.3	61
89	Remote sensing the radionuclide contaminated Belarusian landscape: a potential for imaging spectrometry?. International Journal of Remote Sensing, 2006, 27, 1865-1874.	1.3	8
90	Remote Monitoring of the Impact of ENSO-related Drought on Sabah Rainforest Using NOAA AVHRR Middle Infrared Reflectance: Exploring Emissivity Uncertainty. , 2006, , 119-142.		2

#	Article	IF	CITATIONS
91	Issues in training SVM classifications. , 2006, 6365, 214.		0
92	Training set size requirements for the classification of a specific class. Remote Sensing of Environment, 2006, 104, 1-14.	4.6	232
93	Updating topographic mapping in Great Britain using imagery from high-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60, 212-223.	4.9	60
94	Dynamics of ENSO drought events on Sabah rainforests observed by NOAA AVHRR. International Journal of Remote Sensing, 2006, 27, 2197-2219.	1.3	11
95	Satellite remote sensing of forest resources: three decades of research development. Progress in Physical Geography, 2005, 29, 1-26.	1.4	227
96	Remote sensing of the terrestrial environment using middle infrared radiation (3.0–5.0 µm). International Journal of Remote Sensing, 2004, 25, 3343-3368.	1.3	40
97	Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 2003, 85, 463-474.	4.6	442
98	Exploring the utility of NOAA AVHRR middle infrared reflectance to monitor the impacts of ENSO-induced drought stress on Sabah rainforests. International Journal of Remote Sensing, 2002, 23, 5141-5147.	1.3	36
99	Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing. Applied Geography, 2002, 22, 375-392.	1.7	78
100	Sharpened Mapping of Tropical Forest Biophysical Properties from Coarse Spatial Resolution Satellite Sensor Data. Neural Computing and Applications, 2002, 11, 62-70.	3.2	5
101	Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 2001, 10, 379-387.	2.7	223
102	Assessing the ground data requirements for regional scale remote sensing of tropical forest biophysical properties. International Journal of Remote Sensing, 2000, 21, 2571-2587.	1.3	28
103	Use of middle infrared radiation to estimate the leaf area index of a boreal forest. Tree Physiology, 2000, 20, 755-760.	1.4	31
104	Remote Sensing of Tropical Regions. Geographical Journal, 1999, 165, 327.	1.6	0
105	Fuzzy mapping of tropical land cover along an environmental gradient from remotely sensed data with an artificial neural network. Journal of Geographical Systems, 1999, 1, 23-35.	1.9	23
106	The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 mu m). International Journal of Remote Sensing, 1999, 20, 1017-1023.	1.3	65
107	Using remote sensing to reduce uncertainties in the global carbon budget: The potential of radiation acquired in middle infrared wavelengths. International Journal of Remote Sensing, 1998, 16, 293-327.	1.1	30
108	Potential vegetation indices for determining global forest cover. International Journal of Remote Sensing, 1997, 18, 1395-1401.	1.3	13

#	Article	IF	CITATIONS
109	An assessment of radiance in Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration. International Journal of Remote Sensing, 1996, 17, 249-261.	1.3	66
110	Relations between tropical forest biophysical properties and data acquired in AVHRR channels 1–5. International Journal of Remote Sensing, 1996, 17, 1341-1355.	1.3	32
111	Remote monitoring of impacts of ENSO related drought stress on Sabah rainforests. , 0, , .		0
112	Spatio-temporal response of extreme events on bornean rainforests. , 0, , .		0
113	THE EARTH OBSERVATION TECHNOLOGY CLUSTER. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXIX-B6, 31-36.	0.2	1
114	ANALYSIS OF AIRBORNE HYPERSPECTRAL IMAGE USING VEGETATION INDICES, RED EDGE POSITION AND CONTINUUM REMOVAL FOR DETECTION OF Ganoderma DISEASE IN OIL PALM. Journal of Oil Palm Research, 0, , .	2.1	5
115	Interactions of Middle Infrared (3â \in 5 μm) Radiation with the Environment. , 0, , 51-63.		Ο