Marta Madaghiele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636258/publications.pdf

Version: 2024-02-01

185998 182168 2,987 61 28 51 citations h-index g-index papers 63 63 63 4186 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessment of physico-chemical and biological properties of sericin-collagen substrates for PNS regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 403-413.	1.8	9
2	Exploring the effects of the crosslink density on the physicochemical properties of collagen-based scaffolds. Polymer Testing, 2021, 93, 106966.	2.3	16
3	Semiâ€interpenetrating polymer network cryogels based on poly(ethylene glycol) diacrylate and collagen as potential offâ€theâ€shelf platforms for cancer cell research. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1313-1326.	1.6	5
4	Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 644595.	2.0	57
5	Unique Physical Properties of an Oral Super Absorbent Hydrogel compared to Common Fiber Supplements. Journal of the Academy of Nutrition and Dietetics, 2021, 121, A129.	0.4	O
6	A possible method to avoid skin effect in polymeric scaffold produced through thermally induced phase separation. Results in Engineering, 2021, 12, 100282.	2.2	7
7	Biomimetic cellulose-based superabsorbent hydrogels for treating obesity. Scientific Reports, 2021, 11, 21394.	1.6	6
8	Mechanical and Biological Properties of Magnesium- and Silicon-Substituted Hydroxyapatite Scaffolds. Materials, 2021, 14, 6942.	1.3	8
9	Integration of PLGA Microparticles in Collagen-Based Matrices: Tunable Scaffold Properties and Interaction Between Microparticles and Human Epithelial-Like Cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 137-147.	1.8	5
10	Design of Antibody-Functionalized Polymeric Membranes for the Immunoisolation of Pancreatic Islets. Applied Sciences (Switzerland), 2020, 10, 6056.	1.3	1
11	Cellulose Acetate and Cardanol Based Seed Coating for Intraspecific Weeding Coupled with Natural Herbicide Spraying. Journal of Polymers and the Environment, 2020, 28, 2893-2904.	2.4	13
12	Sub―and Supramolecular Xâ€Ray Characterization of Engineered Tissues from Equine Tendon, Bovine Dermis, and Fish Skin Typeâ€i Collagen. Macromolecular Bioscience, 2020, 20, e2000017.	2.1	34
13	An insight on type I collagen from horse tendon for the manufacture of implantable devices. International Journal of Biological Macromolecules, 2020, 154, 291-306.	3.6	42
14	Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. Journal of Tissue Engineering, 2020, 11, 204173141989606.	2.3	42
15	Embryonic stem cell extracts improve wound healing in diabetic mice. Acta Diabetologica, 2020, 57, 883-890.	1.2	26
16	Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials Science and Engineering C, 2020, 113, 110963.	3.8	102
17	Morphological and Mechanical Characterization of P-Scaffolds with Different Porosity. Lecture Notes in Mechanical Engineering, 2020, , 361-372.	0.3	O
18	Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 2019, 45, 2803-2810.	2.3	173

#	Article	IF	CITATIONS
19	Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Materials Science and Engineering C, 2019, 105, 110046.	3.8	40
20	Investigating the Structure-Related Properties of Cellulose-Based Superabsorbent Hydrogels., 2019,,.		4
21	Investigations of Processing–Induced Structural Changes in Horse Type-I Collagen at Sub and Supramolecular Levels. Frontiers in Bioengineering and Biotechnology, 2019, 7, 203.	2.0	18
22	Hyaluronic acid for advanced therapies: Promises and challenges. European Polymer Journal, 2019, 117, 134-147.	2.6	52
23	Fast synthesis of poly(ethylene glycol) diacrylate cryogels via UV irradiation. Materials Letters, 2018, 218, 305-308.	1.3	19
24	Effects of processing on structural, mechanical and biological properties of collagen-based substrates for regenerative medicine. Scientific Reports, 2018, 8, 1429.	1.6	80
25	Potential of Electrospun Poly(3-hydroxybutyrate)/Collagen Blends for Tissue Engineering Applications. Journal of Healthcare Engineering, 2018, 2018, 1-13.	1.1	29
26	Effect of inorganic and organic bioactive signals decoration on the biological performance of chitosan scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2018, 29, 62.	1.7	8
27	A novel composite type I collagen scaffold with micropatterned porosity regulates the entrance of phagocytes in a severe model of spinal cord injury., 2017, 105, 1040-1053.		23
28	A simple approach to synthetize folic acid decorated magnetite@SiO ₂ nanostructures for hyperthermia applications. Journal of Materials Chemistry B, 2017, 5, 7547-7556.	2.9	16
29	Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization. Materials Science and Engineering C, 2017, 71, 335-344.	3.8	42
30	Poly(lactide-co-glycolide) nanoparticles embedded in a micropatterned collagen scaffold for neuronal tissue regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 359-368.	1.8	7
31	Photoâ€crosslinked poly(ethylene glycol) diacrylate (<scp>PEGDA</scp>) hydrogels from low molecular weight prepolymer: Swelling and permeation studies. Journal of Applied Polymer Science, 2017, 134, .	1.3	92
32	Onâ€Demand Release of Hydrosoluble Drugs from a Paramagnetic Porous Collagenâ€Based Scaffold. Chemistry - A European Journal, 2017, 23, 1338-1345.	1.7	13
33	Study on the degradation of chitosan slurries. Results in Physics, 2016, 6, 728-729.	2.0	8
34	Nanostructured active chitosan-based films for food packaging applications: Effect of graphene stacks on mechanical properties. Measurement: Journal of the International Measurement Confederation, 2016, 90, 418-423.	2,5	58
35	Assessment of collagen crosslinking and denaturation for the design of regenerative scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 186-194.	2.1	55
36	Hybrid Nanocomposites with Magnetic Activation for Advanced Bone Tissue Engineering. , 2016, , 193-224.		0

#	Article	IF	CITATIONS
37	Synthesis of Chitosan-Based Sub-Micrometric Particles by Simple Coacervation. IEEE Nanotechnology Magazine, 2016, 15, 884-889.	1.1	2
38	Graphene reinforced Chitosan-Cinnamaldehyde derivatives films: antifungal activity and mechanical properties., 2015,,.		1
39	Preliminary assessment of chitosan nanoparticles for growth factor delivery. , 2015, , .		2
40	Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release. Biomacromolecules, 2015, 16, 2599-2608.	2.6	52
41	Experimental Assessment of the Use of a Novel Superabsorbent polymer (SAP) for the Optimization of Water Consumption in Agricultural Irrigation Process. Water (Switzerland), 2014, 6, 2056-2069.	1.2	87
42	Tailoring the pore structure of foam scaffolds for nerve regeneration. , 2014, , 101-128.		6
43	Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus, 2014, 4, 20130053.	1.5	41
44	Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	20
45	Development of Semi- and Grafted Interpenetrating Polymer Networks Based on Poly(Ethylene Glycol) Diacrylate and Collagen. Journal of Applied Biomaterials and Functional Materials, 2014, 12, 183-192.	0.7	13
46	Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials, 2014, 35, 4035-4045.	5.7	39
47	Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns and Trauma, 2014, 2, 153.	0.7	235
48	Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture. International Journal of Polymer Science, 2013, 2013, 1-6.	1.2	178
49	Nerve Tissue Engineering. , 2011, , 435-453.		2
50	Development and characterization of celluloseâ€based hydrogels for use as dietary bulking agents. Journal of Applied Polymer Science, 2010, 115, 1438-1444.	1.3	39
51	Modeling the fabrication process of micropatterned macromolecular scaffolds for peripheral nerve regeneration. Journal of Applied Polymer Science, 2010, 116, 1879-1888.	1.3	4
52	Biocompatibility and other properties of hydrogels in regenerative medicine., 2009,, 114-135.		4
53	Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials, 2009, 2, 353-373.	1.3	660
54	Collagen- and gelatine-based films sealing vascular prostheses: evaluation of the degree of crosslinking for optimal blood impermeability. Journal of Materials Science: Materials in Medicine, 2009, 20, 1979-1989.	1.7	37

#	Article	IF	Citations
55	Tuning the Porosity of Collagen-based Scaffolds for Use as Nerve Regenerative Templates. Journal of Cellular Plastics, 2009, 45, 137-155.	1.2	10
56	Biocompatibility and other properties of hydrogels in regenerative medicine. , 2009, , .		0
57	Collagenâ€based matrices with axially oriented pores. Journal of Biomedical Materials Research - Part A, 2008, 85A, 757-767.	2.1	114
58	A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: Anin vitro biocompatibility study on rat intestine. Journal of Applied Polymer Science, 2006, 102, 1524-1530.	1.3	51
59	Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application. Journal of Biomedical Materials Research - Part A, 2006, 79A, 229-236.	2.1	41
60	Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer, 2005, 46, 11206-11212.	1.8	128
61	Cellulose Derivativeâ^'Hyaluronic Acid-Based Microporous Hydrogels Cross-Linked through Divinyl Sulfone (DVS) To Modulate Equilibrium Sorption Capacity and Network Stability. Biomacromolecules, 2004, 5, 92-96.	2.6	106