Michael A Matthay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636220/publications.pdf

Version: 2024-02-01

410 papers 74,658 citations

119 h-index 264 g-index

432 all docs 432 docs citations

times ranked

432

42015 citing authors

#	Article	IF	Citations
1	Vitamin D Status and Clinical Outcomes in Acute Respiratory Distress Syndrome: A Secondary Analysis From the Assessment of Low Tidal Volume and Elevated End-Expiratory Volume to Obviate Lung Injury (ALVEOLI) Trial. Journal of Intensive Care Medicine, 2022, 37, 793-802.	2.8	3
2	Latent class analysis-derived subphenotypes are generalisable to observational cohorts of acute respiratory distress syndrome: a prospective study. Thorax, 2022, 77, 13-21.	5.6	45
3	Single Nucleotide Variant in FAS Associates With Organ Failure and Soluble Fas Cell Surface Death Receptor in Critical Illness. Critical Care Medicine, 2022, 50, e284-e293.	0.9	3
4	Beyond the Alveolar Epithelium: Plasma Soluble Receptor for Advanced Glycation End Products Is Associated With Oxygenation Impairment, Mortality, and Extrapulmonary Organ Failure in Children With Acute Respiratory Distress Syndrome. Critical Care Medicine, 2022, 50, 837-847.	0.9	10
5	Cigarette Smoke Exposure and Acute Respiratory Distress Syndrome in Sepsis: Epidemiology, Clinical Features, and Biologic Markers. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 927-935.	5.6	9
6	Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis. Lancet Respiratory Medicine, the, 2022, 10, 367-377.	10.7	64
7	Transfusion-Related Acute Lung Injury: 36 years of Progress (1985-2021). Annals of the American Thoracic Society, 2022, , .	3.2	5
8	Clinical trial design during and beyond the pandemic: the I-SPY COVID trial. Nature Medicine, 2022, 28, 9-11.	30.7	17
9	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	2.9	82
10	Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nature Cell Biology, 2022, 24, 10-23.	10.3	108
11	Responses to a Neutralizing Monoclonal Antibody for Hospitalized Patients With COVID-19 According to Baseline Antibody and Antigen Levels. Annals of Internal Medicine, 2022, 175, 234-243.	3.9	56
12	A decoy mutant ACE2 designed to reduce COVID-19. Trends in Pharmacological Sciences, 2022, , .	8.7	O
13	Aerosolized Vitamin E Acetate Causes Oxidative Injury in Mice and in Alveolar Macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, , .	2.9	9
14	Pulmonary microbiome and gene expression signatures differentiate lung function in pediatric hematopoietic cell transplant candidates. Science Translational Medicine, 2022, 14, eabm8646.	12.4	6
15	CD14-positive extracellular vesicles in bronchoalveolar lavage fluid as a new biomarker of acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L617-L624.	2.9	11
16	Mesenchymal Stromal Cell Extracellular Vesicles - A New Approach for Preventing Bronchopulmonary Dysplasia?. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	1
17	Extracorporeal Membrane Oxygenation for Respiratory Failure Related to COVID-19: A Nationwide Cohort Study. Anesthesiology, 2022, 136, 732-748.	2.5	21
18	Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature, 2022, 607, 351-355.	27.8	143

#	Article	IF	CITATIONS
19	Importance of catecholamine signaling in the development of platelet exhaustion after traumatic injury. Journal of Thrombosis and Haemostasis, 2022, 20, 2109-2118.	3.8	9
20	COVID-19–associated Lung Microvascular Endotheliopathy: A "From the Bench―Perspective. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 961-972.	5.6	30
21	New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 284-308.	2.9	9
22	Impact of e-cigarette aerosol on primary human alveolar epithelial type 2 cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L152-L164.	2.9	2
23	I-SPY COVID adaptive platform trial for COVID-19 acute respiratory failure: rationale, design and operations. BMJ Open, 2022, 12, e060664.	1.9	15
24	Upcoming and urgent challenges in critical care research based on COVID-19 pandemic experience. Anaesthesia, Critical Care & Dan Medicine, 2022, , 101121.	1.4	2
25	The potential of lipid mediator networks as ocular surface therapeutics and biomarkers. Ocular Surface, 2021, 19, 104-114.	4.4	13
26	Global absence and targeting of protective immune states in severe COVID-19. Nature, 2021, 591, 124-130.	27.8	206
27	The ABO histo-blood group, endothelial activation, and acute respiratory distress syndrome risk in critical illness. Journal of Clinical Investigation, 2021, 131, .	8.2	26
28	Fibrinolytic niche is required for alveolar type 2 cell-mediated alveologenesis via a uPA-A6-CD44+-ENaC signal cascade. Signal Transduction and Targeted Therapy, 2021, 6, 97.	17.1	13
29	Progress and potential of mesenchymal stromal cell therapy in acute respiratory distress syndrome. , 2021, , 353-372.		1
30	The ARREST Pneumonia Clinical Trial. Rationale and Design. Annals of the American Thoracic Society, 2021, 18, 698-708.	3.2	3
31	Healthy <i>versus</i> inflamed lung environments differentially affect mesenchymal stromal cells. European Respiratory Journal, 2021, 58, 2004149.	6.7	20
32	Transepithelial nasal potential difference in patients with, and at risk of acute respiratory distress syndrome. Thorax, 2021, 76, thoraxjnl-2020-215587.	5.6	1
33	A neutrophil subset defined by intracellular olfactomedin 4 is associated with mortality in sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L892-L902.	2.9	21
34	Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS. JCI Insight, 2021, 6, .	5.0	48
35	Readmission following both cardiac and nonâ€cardiac acute dyspnoea is associated with a striking risk of death. ESC Heart Failure, 2021, 8, 2473-2484.	3.1	5
36	Inhibition of the lipoxin A4 and resolvin D1 receptor impairs host response to acute lung injury caused by pneumococcal pneumonia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1085-L1092.	2.9	12

#	Article	IF	Citations
37	Acute respiratory distress syndrome is associated with impaired alveolar macrophage efferocytosis. European Respiratory Journal, 2021, 58, 2100829.	6.7	24
38	Defining phenotypes and treatment effect heterogeneity to inform acute respiratory distress syndrome and sepsis trials: secondary analyses of three RCTs. Efficacy and Mechanism Evaluation, 2021, 8, 1-104.	0.7	11
39	Plasma Metabolites in Early Sepsis Identify Distinct Clusters Defined by Plasma Lipids. , 2021, 3, e0478.		10
40	Tracheal aspirate RNA sequencing identifies distinct immunological features of COVID-19 ARDS. Nature Communications, 2021, 12, 5152.	12.8	47
41	The Berlin definition of acute respiratory distress syndrome: should patients receiving high-flow nasal oxygen be included?. Lancet Respiratory Medicine, the, 2021, 9, 933-936.	10.7	80
42	Thrombomodulin is associated with increased mortality and organ failure in mechanically ventilated children with acute respiratory failure: biomarker analysis from a multicenter randomized controlled trial. Critical Care, 2021, 25, 271.	5 . 8	12
43	Carbonic Anhydrase IX: Scaring Away the Grim Reaper in Acute Lung Injury?. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 573-575.	2.9	1
44	IL-6 Receptor Antagonist Therapy for Patients Hospitalized for COVID-19. JAMA - Journal of the American Medical Association, 2021, 326, 483.	7.4	31
45	Therapeutic Effects of High Molecular Weight Hyaluronic Acid in Severe Pseudomonas Aeruginosa Pneumonia in Ex Vivo Perfused Human Lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L827-L836.	2.9	3
46	Assessment of Alveolar Macrophage Dysfunction Using an in vitro Model of Acute Respiratory Distress Syndrome. Frontiers in Medicine, 2021, 8, 737859.	2.6	4
47	Preface. Critical Care Clinics, 2021, 37, xiii-xv.	2.6	0
48	Environmental Factors. Critical Care Clinics, 2021, 37, 717-732.	2.6	2
49	Molecular programs of fibrotic change in aging human lung. Nature Communications, 2021, 12, 6309.	12.8	33
50	Cell Therapy with the Cell or Without the Cell for Premature Infants? Time Will Tell. American Journal of Respiratory and Critical Care Medicine, 2021, , .	5 . 6	0
51	Delayed angiopoietinâ€2 blockade reduces influenzaâ€induced lung injury and improves survival in mice. Physiological Reports, 2021, 9, e15081.	1.7	2
52	Delayed Presentation and Mortality in Children With Sepsis in a Public Tertiary Care Hospital in Tanzania. Frontiers in Pediatrics, 2021, 9, 764163.	1.9	2
53	Intravenous immunoglobulin therapy for COVID-19 ARDS. Lancet Respiratory Medicine,the, 2021, , .	10.7	5
54	Promises and challenges of personalized medicine to guide ARDS therapy. Critical Care, 2021, 25, 404.	5.8	35

#	Article	IF	CITATIONS
55	Functional Outcomes and Morbidity in Pediatric Sepsis Survivors: A Tanzanian Experience. Frontiers in Pediatrics, 2021, 9, 805518.	1.9	1
56	Plasma sRAGE Acts as a Genetically Regulated Causal Intermediate in Sepsis-associated Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 47-56.	5.6	49
57	Peripheral blood leukocyte telomere length is associated with survival of sepsis patients. European Respiratory Journal, 2020, 55, 1901044.	6.7	27
58	Time to Recognition of Sepsis in the Emergency Department Using Electronic Health Record Data: A Comparative Analysis of Systemic Inflammatory Response Syndrome, Sequential Organ Failure Assessment, and Quick Sequential Organ Failure Assessment. Critical Care Medicine, 2020, 48, 200-209.	0.9	24
59	Proinflammatory cytokines and ARDS pulmonary edema fluid induce CD40 on human mesenchymal stromal cellsâ€"A potential mechanism for immune modulation. PLoS ONE, 2020, 15, e0240319.	2.5	5
60	Using best subset regression to identify clinical characteristics and biomarkers associated with sepsis-associated acute kidney injury. American Journal of Physiology - Renal Physiology, 2020, 319, F979-F987.	2.7	7
61	Higher plasma cystatin C is associated with mortality after acute respiratory distress syndrome: findings from a Fluid and Catheter Treatment Trial (FACTT) substudy. Critical Care, 2020, 24, 416.	5.8	8
62	Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Medicine, 2020, 46, 2136-2152.	8.2	106
63	Alternative Tobacco Product Use in Critically Ill Patients. International Journal of Environmental Research and Public Health, 2020, 17, 8707.	2.6	2
64	Association of patient weight status with plasma surfactant protein D, a biomarker of alveolar epithelial injury, in children with acute respiratory failure. Pediatric Pulmonology, 2020, 55, 2730-2736.	2.0	5
65	Dexamethasone in hospitalised patients with COVID-19: addressing uncertainties. Lancet Respiratory Medicine,the, 2020, 8, 1170-1172.	10.7	98
66	Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L908-L925.	2.9	20
67	Dose-Dependent Pulmonary Toxicity of Aerosolized Vitamin E Acetate. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 748-757.	2.9	45
68	Designing an ARDS trial for 2020 and beyond: focus on enrichment strategies. Intensive Care Medicine, 2020, 46, 2153-2156.	8.2	31
69	The ex vivo perfused human lung is resistant to injury by high-dose <i>S. pneumoniae</i> bacteremia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L218-L227.	2.9	8
70	Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet Respiratory Medicine, the, 2020, 8, 433-434.	10.7	254
71	Identifying Clinical Research Priorities in Adult Pulmonary and Critical Care. NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 511-523.	5.6	40
72	Plasmin improves blood–gas barrier function in oedematous lungs by cleaving epithelial sodium channels. British Journal of Pharmacology, 2020, 177, 3091-3106.	5.4	19

#	Article	IF	CITATIONS
73	Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis. Intensive Care Medicine, 2020, 46, 1222-1231.	8.2	74
74	Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiological Reviews, 2020, 100, 1065-1075.	28.8	308
75	Is a "Cytokine Storm―Relevant to COVID-19?. JAMA Internal Medicine, 2020, 180, 1152.	5.1	577
76	Impact of Bilateral Infiltrates on Inflammatory Biomarker Levels and Clinical Outcomes of Children With Oxygenation Defect. Critical Care Medicine, 2020, 48, e498-e504.	0.9	3
77	Extracellular Vesicles: A New Frontier for Research in Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 15-24.	2.9	48
78	Contemporary strategies to improve clinical trial design for critical care research: insights from the First Critical Care Clinical Trialists Workshop. Intensive Care Medicine, 2020, 46, 930-942.	8.2	49
79	Potential Value of Biomarker Signatures in Sepsis and Acute Respiratory Distress Syndrome in Children and Adults*. Critical Care Medicine, 2020, 48, 428-430.	0.9	0
80	Patterns and Trends in Advance Care Planning Among Older Adults Who Received Intensive Care at the End of Life. JAMA Internal Medicine, 2020, 180, 786.	5.1	27
81	Improved survival after lung transplantation for adults requiring preoperative invasive mechanical ventilation: A national cohort study. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, 1385-1395.e6.	0.8	10
82	Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. Lancet Respiratory Medicine, the, 2020, 8, 247-257.	10.7	165
83	Surfactant Protein D Is Associated With Severe Pediatric ARDS, Prolonged Ventilation, and Death in Children With Acute RespiratoryÂFailure. Chest, 2020, 158, 1027-1035.	0.8	30
84	Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications, 2020, 11, 1920.	12.8	346
85	Combined Mesenchymal Stromal Cell Therapy and Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome. A Randomized Controlled Trial in Sheep. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 383-392.	5.6	27
86	Acute respiratory distress syndrome subphenotypes and therapy responsive traits among preclinical models: protocol for a systematic review and meta-analysis. Respiratory Research, 2020, 21, 81.	3.6	12
87	Clinician Recognition of the Acute Respiratory Distress Syndrome: Risk Factors for Under-Recognition and Trends Over Time*. Critical Care Medicine, 2020, 48, 830-837.	0.9	16
88	Biological Mechanisms of COVID-19 Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1489-1491.	5.6	38
89	Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. Journal of Clinical Investigation, 2020, 130, 6218-6221.	8.2	50
90	The endogenous capacity to produce proinflammatory mediators by the ex vivo human perfused lung. Intensive Care Medicine Experimental, 2020, 8, 56.	1.9	7

#	Article	IF	Citations
91	Title is missing!. , 2020, 15, e0240319.		O
92	Title is missing!. , 2020, 15, e0240319.		0
93	Title is missing!. , 2020, 15, e0240319.		0
94	Title is missing!. , 2020, 15, e0240319.		0
95	Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe <i>E. coli</i> pneumonia. Thorax, 2019, 74, 43-50.	5.6	166
96	Low to Moderate Air Pollutant Exposure and Acute Respiratory Distress Syndrome after Severe Trauma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 62-70.	5.6	47
97	Therapeutic Effects of Hyaluronic Acid in Bacterial Pneumonia in <i>Ex Vivo</i> Perfused Human Lungs. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1234-1245.	5.6	29
98	ECMO in severe acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2019, 7, 106-108.	10.7	5
99	Plasma total fibroblast growth factor 23 levels are associated with acute kidney injury and mortality in children with acute respiratory distress syndrome. PLoS ONE, 2019, 14, e0222065.	2.5	7
100	Clinically relevant model of pneumococcal pneumonia, ARDS, and nonpulmonary organ dysfunction in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L717-L736.	2.9	24
101	Lung inflammatory environments differentially alter mesenchymal stromal cell behavior. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L823-L831.	2.9	36
102	A prospective investigation of interleukin-8 levels in pediatric acute respiratory failure and acute respiratory distress syndrome. Critical Care, 2019, 23, 128.	5.8	28
103	Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 031-039.	2.1	276
104	Heterogeneity in sepsis: new biological evidence with clinical applications. Critical Care, 2019, 23, 80.	5.8	118
105	Acute respiratory distress syndrome. Nature Reviews Disease Primers, 2019, 5, 18.	30.5	1,364
106	Precision medicine for cell therapy in acute respiratory distress syndrome – Authors' reply. Lancet Respiratory Medicine,the, 2019, 7, e14.	10.7	2
107	Clinician-Family Communication About Patients' Values and Preferences in Intensive Care Units. JAMA Internal Medicine, 2019, 179, 676.	5.1	108
108	Proliferative regulation of alveolar epithelial type 2 progenitor cells by human <i>Scnn1d</i> gene. Theranostics, 2019, 9, 8155-8170.	10.0	12

#	Article	IF	Citations
109	Positive Cumulative Fluid Balance Is Associated With Mortality in Pediatric Acute Respiratory Distress Syndrome in the Setting of Acute Kidney Injury. Pediatric Critical Care Medicine, 2019, 20, 323-331.	0.5	28
110	A Multicenter Study of the Causes and Consequences of Optimistic Expectations About Prognosis by Surrogate Decision-Makers in ICUs*. Critical Care Medicine, 2019, 47, 1184-1193.	0.9	26
111	Plasma sTNFR1 and IL8 for prognostic enrichment in sepsis trials: a prospective cohort study. Critical Care, 2019, 23, 400.	5.8	22
112	Is a Part Better than the Whole for Cell-based Therapy for Acute Respiratory Distress Syndrome?. Anesthesiology, 2019, 130, 683-685.	2.5	5
113	Association of Elevated Plasma Interleukin-18 Level With Increased Mortality in a Clinical Trial of Statin Treatment for Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2019, 47, 1089-1096.	0.9	70
114	Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 333-341.	5.6	186
115	Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respiratory Medicine,the, 2019, 7, 154-162.	10.7	443
116	AlMing Immunomodulation Therapy at Sepsis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 253-254.	2.9	1
117	Therapeutic potential of mesenchymal stromal cells in the treatment of ARDS. Transfusion, 2019, 59, 869-875.	1.6	16
118	Could Decisions to Limit Treatment Contribute to Mortality Differences between Patients with Different Presepsis Trajectories?. Annals of the American Thoracic Society, 2019, 16, 522-522.	3.2	1
119	The ex vivo human lung: research value for translational science. JCI Insight, 2019, 4, .	5.0	24
120	The TLR4-PAR1 Axis Regulates Bone Marrow Mesenchymal Stromal Cell Survival and Therapeutic Capacity in Experimental Bacterial Pneumonia. Stem Cells, 2018, 36, 796-806.	3.2	24
121	Elevated donor plasminogen activator inhibitorâ€1 levels and the risk of primary graft dysfunction. Clinical Transplantation, 2018, 32, e13210.	1.6	3
122	Mesenchymal stem cell-derived extracellular vesicles attenuate pulmonary vascular permeability and lung injury induced by hemorrhagic shock and trauma. Journal of Trauma and Acute Care Surgery, 2018, 84, 245-256.	2.1	76
123	Rectal and Bladder Temperatures vs Forehead Core Temperatures Measured With SpotOn Monitoring System. American Journal of Critical Care, 2018, 27, 43-50.	1.6	15
124	Mesenchymal stromal cells and macrophages in sepsis: new insights. European Respiratory Journal, 2018, 51, 1800510.	6.7	15
125	Endothelial biomarkers in human sepsis: pathogenesis and prognosis for ARDS. Pulmonary Circulation, 2018, 8, 1-12.	1.7	62
126	Cell-based Therapy in Sepsis. A Step Closer. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 280-281.	5.6	9

#	Article	IF	Citations
127	Exosome-based Therapy for Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 10-12.	5.6	12
128	Intratracheal instillation of alveolar type II cells enhances recovery from acute lung injury in rats. Journal of Heart and Lung Transplantation, 2018, 37, 782-791.	0.6	28
129	Interleukin-1 Receptor Antagonist Is Associated With Pediatric Acute Respiratory Distress Syndrome and Worse Outcomes in Children With Acute Respiratory Failure*. Pediatric Critical Care Medicine, 2018, 19, 930-938.	0.5	25
130	Variability in Pediatric Ideal Body Weight Calculation: Implications for Lung-Protective Mechanical Ventilation Strategies in Pediatric Acute Respiratory Distress Syndrome*. Pediatric Critical Care Medicine, 2018, 19, e643-e652.	0.5	17
131	Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12353-E12362.	7.1	249
132	Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Medicine, 2018, 44, 1859-1869.	8.2	223
133	Beyond Low Tidal Volume Ventilation: Treatment Adjuncts for Severe Respiratory Failure in Acute Respiratory Distress Syndrome. Critical Care Medicine, 2018, 46, 1820-1831.	0.9	44
134	Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Medicine, 2018, 44, 1849-1858.	8.2	89
135	Meta-Analysis of Preclinical Studies of Fibrinolytic Therapy for Acute Lung Injury. Frontiers in Immunology, 2018, 9, 1898.	4.8	60
136	Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2018, 379, 884-887.	27.0	19
137	Cigarette smoke exposure worsens acute lung injury in antibiotic-treated bacterial pneumonia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L25-L40.	2.9	20
138	Inhibiting Bruton's tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L52-L58.	2.9	81
139	Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respiratory Medicine, the, 2018, 6, 691-698.	10.7	455
140	Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Medicine, 2018, 44, 1388-1399.	8.2	82
141	Human pulmonary endothelial cell permeability after exposure to LPS-stimulated leukocyte supernatants derived from patients with early sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L638-L644.	2.9	18
142	Influence of Clinical Factors and Exclusion Criteria on Mortality in ARDS Observational Studies and Randomized Controlled Trials. Respiratory Care, 2018, 63, 1060-1069.	1.6	24
143	Measurement of Protein Permeability and Fluid Transport of Human Alveolar Epithelial Type II Cells Under Pathological Conditions. Methods in Molecular Biology, 2018, 1809, 121-128.	0.9	1
144	Effect of Rosuvastatin on Acute Kidney Injury in Sepsis-Associated Acute Respiratory Distress Syndrome. Canadian Journal of Kidney Health and Disease, 2018, 5, 205435811878915.	1.1	3

#	Article	IF	CITATIONS
145	Effects of bone marrow-derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF- $\langle i \rangle \hat{1} \pm \langle i \rangle$, IL- $1 \langle i \rangle \hat{1}^2 \langle i \rangle$, and IFN- $\langle i \rangle \hat{1}^3 \langle i \rangle$. Physiological Reports, 2018, 6, e13831.	1.7	7
146	Possible hepatotoxicity of IQOS. Tobacco Control, 2018, 27, s39-s40.	3.2	37
147	Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax, 2018, 73, 840-846.	5. 6	244
148	Secondary peritonitis: principles of diagnosis and intervention. BMJ: British Medical Journal, 2018, 361, k1407.	2.3	88
149	Cigarette Smoke Exposure Worsens Endotoxin-Induced Lung Injury and Pulmonary Edema in Mice. Nicotine and Tobacco Research, 2017, 19, 1033-1039.	2.6	26
150	Randomized Clinical Trial of a Combination of an Inhaled Corticosteroid and Beta Agonist in Patients at Risk of Developing the Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2017, 45, 798-805.	0.9	69
151	Incorporating Inflammation into Mortality Risk in Pediatric Acute Respiratory Distress Syndrome. Critical Care Medicine, 2017, 45, 858-866.	0.9	41
152	Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Respiratory Medicine, the, 2017, 5, 484-491.	10.7	70
153	Pulmonary toxicity of e-cigarettes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L193-L206.	2.9	225
154	External validation of a biomarker and clinical prediction model for hospital mortality in acute respiratory distress syndrome. Intensive Care Medicine, 2017, 43, 1123-1131.	8.2	25
155	Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respiratory Medicine, the, 2017, 5, 524-534.	10.7	213
156	Higher mini-BAL total protein concentration in early ARDS predicts faster resolution of lung injury measured by more ventilator-free days. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L579-L585.	2.9	15
157	Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L703-L709.	2.9	36
158	F <scp>ifty</scp> Y <scp>ears</scp> <scp>of</scp> R <scp>esearch</scp> <scp>in</scp> ARDS.Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 266-273.	5.6	179
159	What drives neutrophils to the alveoli in ARDS?. Thorax, 2017, 72, 1-3.	5 . 6	418
160	Derivation and validation of a two-biomarker panel for diagnosis of ARDS in patients with severe traumatic injuries. Trauma Surgery and Acute Care Open, 2017, 2, e000121.	1.6	28
161	Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nature Cell Biology, 2017, 19, 904-914.	10.3	202
162	ENaCs as Both Effectors and Regulators of MiRNAs in Lung Epithelial Development and Regeneration. Cellular Physiology and Biochemistry, 2017, 44, 1120-1132.	1.6	16

#	Article	IF	Citations
163	Extracellular Vesicle Transfer from Mesenchymal Stromal Cells Modulates Macrophage Function in Acute Lung Injury. Basic Science and Clinical Implications. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1234-1236.	5.6	17
164	Endothelial Damage During Septic Shock. Chest, 2017, 152, 1-3.	0.8	16
165	Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells, 2017, 35, 316-324.	3.2	130
166	Inhalation therapies in acute respiratory distress syndrome. Annals of Translational Medicine, 2017, 5, 293-293.	1.7	30
167	Alveolar Fluid Clearance in Pathologically Relevant Conditions: In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Frontiers in Immunology, 2017, 8, 371.	4.8	55
168	Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Frontiers in Immunology, 2017, 8, 842.	4.8	35
169	Cytokine Profiles of Severe Influenza Virus-Related Complications in Children. Frontiers in Immunology, 2017, 8, 1423.	4.8	38
170	Reply to "Letter to the Editor: Pulmonary toxicity of electronic cigarettes: more doubts than certaintiesâ€. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L966-L967.	2.9	5
171	Validation of two multiplex platforms to quantify circulating markers of inflammation and endothelial injury in severe infection. PLoS ONE, 2017, 12, e0175130.	2.5	54
172	miR-34 miRNAs Regulate Cellular Senescence in Type II Alveolar Epithelial Cells of Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE, 2016, 11, e0158367.	2.5	106
173	IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight, 2016, 1, e87871.	5.0	42
174	Timing of Intubation and Clinical Outcomes in Adults With Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2016, 44, 120-129.	0.9	170
175	The acute respiratory distress syndrome following isolated severe traumatic brain injury. Journal of Trauma and Acute Care Surgery, 2016, 80, 989-997.	2.1	54
176	A Simple and Robust Bedside Model for Mortality Risk in Pediatric Patients With Acute Respiratory Distress Syndrome*. Pediatric Critical Care Medicine, 2016, 17, 907-916.	0.5	31
177	Cigarette smokers have exaggerated alveolar barrier disruption in response to lipopolysaccharide inhalation. Thorax, 2016, 71, 1130-1136.	5.6	59
178	Association of common genetic variation in the protein C pathway genes with clinical outcomes in acute respiratory distress syndrome. Critical Care, 2016, 20, 151.	5.8	25
179	Sepsis: pathophysiology and clinical management. BMJ, The, 2016, 353, i1585.	6.0	653
180	Negative-Pressure Pulmonary Edema. Chest, 2016, 150, 927-933.	0.8	147

#	Article	lF	Citations
181	Overnight Extubation in Patients With Mechanical Ventilation. JAMA Internal Medicine, 2016, 176, 1660.	5.1	O
182	Challenges in predicting which patients will develop ARDS. Lancet Respiratory Medicine, the, 2016, 4, 847-848.	10.7	5
183	Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 2016, 34, 2210-2223.	3.2	401
184	Acute kidney injury subphenotypes based on creatinine trajectory identifies patients at increased risk of death. Critical Care, 2016, 20, 372.	5.8	58
185	Clinical, Radiographic, Physiologic, and Biologic Measurements to Facilitate Personalized Medicine for ARDS. Chest, 2016, 150, 989-990.	0.8	5
186	Key stakeholders' perceptions of the acceptability and usefulness of a tablet-based tool to improve communication and shared decision making in ICUs. Journal of Critical Care, 2016, 33, 19-25.	2.2	20
187	Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Medicine, 2016, 42, 1427-1436.	8.2	130
188	Alveolar Epithelium and Fluid Transport. , 2016, , 150-156.e2.		1
189	Acute cor pulmonale and the acute respiratory distress syndrome. Intensive Care Medicine, 2016, 42, 934-936.	8.2	17
190	Diagnostic workup for ARDS patients. Intensive Care Medicine, 2016, 42, 674-685.	8.2	89
191	Long-Term Ozone Exposure Increases the Risk of Developing the Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1143-1150.	5.6	59
192	New Strategies for Effective Therapeutics in Critically III Patients. JAMA - Journal of the American Medical Association, 2016, 315, 747.	7.4	17
193	Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L224-L231.	2.9	74
194	Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3621-3626.	7.1	174
195	Acute Hypoxemic Respiratory Failure after Large-Volume Thoracentesis. Mechanisms of Pleural Fluid Formation and Reexpansion Pulmonary Edema. Annals of the American Thoracic Society, 2016, 13, 438-443.	3.2	11
196	Cathepsin L Helps to Defend Mice from Infection with Influenza A. PLoS ONE, 2016, 11, e0164501.	2.5	9
197	Cigarette Smoke Exposure and the Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2015, 43, 1790-1797.	0.9	92
198	Saving Lives with High-Flow Nasal Oxygen. New England Journal of Medicine, 2015, 372, 2225-2226.	27.0	20

#	Article	IF	Citations
199	Proteolytic Regulation of Epithelial Sodium Channels by Urokinase Plasminogen Activator. Journal of Biological Chemistry, 2015, 290, 5241-5255.	3.4	39
200	Therapeutic Effects of Human Mesenchymal Stem Cell–derived Microvesicles in Severe Pneumonia in Mice. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 324-336.	5.6	392
201	Visualization of Fra-1/AP-1 activation during LPS-induced inflammatory lung injury using fluorescence optical imaging. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L414-L424.	2.9	7
202	Elevated soluble thrombomodulin is associated with organ failure and mortality in children with acute respiratory distress syndrome (ARDS): a prospective observational cohort study. Critical Care, 2015, 19, 435.	5.8	41
203	Recipient clinical risk factors predominate in possible transfusionâ€related acute lung injury. Transfusion, 2015, 55, 947-952.	1.6	40
204	Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respiratory Medicine, the, 2015, 3, 24-32.	10.7	614
205	Body Temperature and Mortality in Patients with Acute Respiratory Distress Syndrome. American Journal of Critical Care, 2015, 24, 15-23.	1.6	32
206	Estimating Dead-Space Fraction for Secondary Analyses of Acute Respiratory Distress Syndrome Clinical Trials. Critical Care Medicine, 2015, 43, 1026-1035.	0.9	40
207	Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. Journal of Immunology, 2015, 195, 875-881.	0.8	132
208	Therapeutic Potential of Mesenchymal Stromal Cells for Acute Respiratory Distress Syndrome. Annals of the American Thoracic Society, 2015, 12, S54-S57.	3.2	37
209	Resolution of Alveolar Edema in Acute Respiratory Distress Syndrome. Physiology and Biology. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 124-125.	5.6	14
210	Distinct Molecular Phenotypes of Direct vs Indirect ARDS in Single-Center and Multicenter Studies. Chest, 2015, 147, 1539-1548.	0.8	283
211	Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1102-L1113.	2.9	137
212	Mesenchymal stem (stromal) cells for treatment of acute respiratory distress syndrome – Authors' reply. Lancet Respiratory Medicine,the, 2015, 3, e12-e13.	10.7	3
213	Biology and pathology of fibroproliferation following the acute respiratory distress syndrome. Intensive Care Medicine, 2015, 41, 147-150.	8.2	6
214	Sedation Protocol for Critically III Pediatric Patientsâ€"Reply. JAMA - Journal of the American Medical Association, 2015, 313, 1754.	7.4	3
215	Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 2015, 517, 621-625.	27.8	562
216	Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax, 2015, 70, 48-56.	5.6	207

#	Article	IF	Citations
217	Accumulation of BDCA1+ Dendritic Cells in Interstitial Fibrotic Lung Diseases and Th2-High Asthma. PLoS ONE, 2014, 9, e99084.	2.5	34
218	Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction. Frontiers in Physiology, 2014, 5, 259.	2.8	18
219	Is there a need for emerging drugs for the acute respiratory distress syndrome?. Expert Opinion on Emerging Drugs, 2014, 19, 323-328.	2.4	7
220	Mesenchymal Stromal (Stem) Cell Therapy: An Emerging Immunomodulatory Strategy for the Adjunctive Treatment of Sepsis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 363-364.	5.6	4
221	A Novel Tumor Necrosis Factor–mediated Mechanism of Direct Epithelial Sodium Channel Activation. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 522-532.	5.6	49
222	Silencing Bruton's tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L435-L448.	2.9	47
223	Intensive care unit scoring systems outperform emergency department scoring systems for mortality prediction in critically ill patients: a prospective cohort study. Journal of Intensive Care, 2014, 2, 40.	2.9	20
224	Prevalence and Impact of Active and Passive Cigarette Smoking in Acute Respiratory Distress Syndrome. Critical Care Medicine, 2014, 42, 2058-2068.	0.9	43
225	One-year mortality and predictors of death among hospital survivors of acute respiratory distress syndrome. Intensive Care Medicine, 2014, 40, 388-396.	8.2	144
226	Is there still a role for the lung injury score in the era of the Berlin definition ARDS?. Annals of Intensive Care, 2014, 4, 4.	4.6	56
227	Rosuvastatin for Sepsis-Associated Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2014, 370, 2191-2200.	27.0	439
228	Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L395-L406.	2.9	84
229	Endogenous and Exogenous Cell-Based Pathways for Recovery from Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2014, 35, 797-809.	2.1	7
230	Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respiratory Medicine, the, 2014, 2, 1016-1026.	10.7	222
231	Human Mesenchymal Stem Cell Microvesicles for Treatment of <i>Escherichia coli</i> Endotoxin-Induced Acute Lung Injury in Mice. Stem Cells, 2014, 32, 116-125.	3.2	550
232	The Association Between Physiologic Dead-Space Fraction and Mortality in Subjects With ARDS Enrolled in a Prospective Multi-Center Clinical Trial. Respiratory Care, 2014, 59, 1611-1618.	1.6	78
233	Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax, 2014, 69, 819-825.	5.6	133
234	Keratinocyte Growth Factor Promotes Epithelial Survival and Resolution in a Human Model of Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1520-1529.	5.6	96

#	Article	IF	Citations
235	Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Annals of Intensive Care, 2014, 4, 22.	4.6	53
236	Applying metabolomics to uncover novel biology in ARDS. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L957-L961.	2.9	34
237	Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L975-L985.	2.9	101
238	Treating ARDS: new hope for a tough problem. Lancet Respiratory Medicine, the, 2014, 2, 84-85.	10.7	13
239	Reperfusion pulmonary edema in children with tetralogy of Fallot, pulmonary atresia, and major aortopulmonary collateral arteries undergoing unifocalization procedures: A pilot study examining potential pathophysiologic mechanisms and clinical significance. Journal of Thoracic and Cardiovascular Surgery. 2014. 148. 1560-1565.	0.8	26
240	Mechanical ventilation in acute hypoxemic respiratory failure: A review of new strategies for the practicing hospitalist. Journal of Hospital Medicine, 2014, 9, 469-475.	1.4	14
241	TGF-Â and lung fluid balance in ARDS. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 885-886.	7.1	24
242	Resolution of Pulmonary Edema. Thirty Years of Progress. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1301-1308.	5.6	134
243	Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respiratory Medicine, the, 2014, 2, 611-620.	10.7	992
244	Metabolomic Derangements Are Associated with Mortality in Critically III Adult Patients. PLoS ONE, 2014, 9, e87538.	2.5	127
245	Therapeutic Effects of Human Mesenchymal Stem Cells in <i>Ex Vivo</i> Human Lungs Injured with Live Bacteria. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 751-760.	5.6	313
246	Cell Therapy for Lung Diseases. Report from an NIH–NHLBI Workshop, November 13–14, 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 370-375.	5.6	29
247	The acute respiratory distress syndrome in 2013. Translational Respiratory Medicine, 2013, 1, 10.	3.8	9
248	Plasma Angiopoietin-2 Predicts the Onset of Acute Lung Injury in Critically Ill Patients. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 736-742.	5.6	220
249	Comparison of thermodilution measured extravascular lung water with chest radiographic assessment of pulmonary oedema in patients with acute lung injury. Annals of Intensive Care, 2013, 3, 25.	4.6	27
250	From protective ventilation to super-protective ventilation for acute respiratory distress syndrome. Intensive Care Medicine, 2013, 39, 963-965.	8.2	12
251	Regulation and Repair of the Alveolar-Capillary Barrier in Acute Lung Injury. Annual Review of Physiology, 2013, 75, 593-615.	13.1	266
252	Mesenchymal Stem Cells and Idiopathic Pulmonary Fibrosis. Potential for Clinical Testing. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 133-140.	5.6	116

#	Article	IF	CITATIONS
253	The Berlin Definition of ARDS versus Pathological Evidence of Diffuse Alveolar Damage. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 675-677.	5 . 6	59
254	Viral Pathogens and Acute Lung Injury: Investigations Inspired by the SARS Epidemic and the 2009 H1N1 Influenza Pandemic. Seminars in Respiratory and Critical Care Medicine, 2013, 34, 475-486.	2.1	60
255	Early Acute Lung Injury. Critical Care Medicine, 2013, 41, 1929-1937.	0.9	80
256	Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Critical Care, 2013, 17, R253.	5.8	169
257	Cell Therapy for Lung Disease. Chest, 2013, 143, 1525-1527.	0.8	4
258	Activation of the Heat Shock Response Attenuates the Interleukin 1β–Mediated Inhibition of the Amiloride-Sensitive Alveolar Epithelial Ion Transport. Shock, 2013, 39, 189-196.	2.1	7
259	Calcium flux and endothelial dysfunction during acute lung injury: a STIMulating target for therapy. Journal of Clinical Investigation, 2013, 123, 1015-1018.	8.2	19
260	MSCs for Treatment of Acute Lung Injury. , 2013, , 561-570.		0
261	Agonist of growth hormone-releasing hormone reduces pneumolysin-induced pulmonary permeability edema. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2084-2089.	7.1	50
262	Antiâ€inflammatory effects of β ₂ adrenergic receptor agonists in experimental acute lung injury. FASEB Journal, 2012, 26, 2137-2144.	0.5	84
263	The acute respiratory distress syndrome. Journal of Clinical Investigation, 2012, 122, 2731-2740.	8.2	1,434
264	Mesenchymal stem cells enhance survival and bacterial clearance in murine <i>Escherichia coli</i> pneumonia. Thorax, 2012, 67, 533-539.	5.6	307
265	Plasma angiopoietin-2 in clinical acute lung injury. Critical Care Medicine, 2012, 40, 1731-1737.	0.9	194
266	The severity of shock is associated with impaired rates of net alveolar fluid clearance in clinical acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L550-L555.	2.9	23
267	Transfusion-related acute lung injury: incidence and risk factors. Blood, 2012, 119, 1757-1767.	1.4	493
268	Clinical review: Early treatment of acute lung injury - paradigm shift toward prevention and treatment prior to respiratory failure. Critical Care, 2012, 16, 223.	5.8	90
269	Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1003-L1013.	2.9	278
270	Mesenchymal stem cells and the stem cell niche: a new chapter. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1147-L1149.	2.9	16

#	Article	IF	Citations
271	The Association Between a Darc Gene Polymorphism and Clinical Outcomes in African American Patients With Acute Lung Injury. Chest, 2012, 141, 1160-1169.	0.8	57
272	Comparison of chest radiograph scoring to lung weight as a quantitative index of pulmonary edema in organ donors. Clinical Transplantation, 2012, 26, 665-671.	1.6	23
273	Genome Wide Association Identifies PPFIA1 as a Candidate Gene for Acute Lung Injury Risk Following Major Trauma. PLoS ONE, 2012, 7, e28268.	2.5	73
274	The Effect of Hemorrhagic Shock and Resuscitation on Bloodâ€Brain Barrier Integrity. FASEB Journal, 2012, 26, 707.7.	0.5	0
275	Prognostic value of pulmonary dead space in patients with the acute respiratory distress syndrome. Critical Care, 2011, 15, 185.	5.8	8
276	Mesenchymal Stem Cells and Acute Lung Injury. Critical Care Clinics, 2011, 27, 719-733.	2.6	80
277	Biomarkers in Acute Lung Injury: Insights into the Pathogenesis of Acute Lung Injury. Critical Care Clinics, 2011, 27, 355-377.	2.6	199
278	The Acute Respiratory Distress Syndrome: Pathogenesis and Treatment. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 147-163.	22.4	818
279	Claudin-4 Levels Are Associated with Intact Alveolar Fluid Clearance in Human Lungs. American Journal of Pathology, 2011, 179, 1081-1087.	3.8	79
280	Vascular pedicle width in acute lung injury: correlation with intravascular pressures and ability to discriminate fluid status. Critical Care, 2011, 15, R86.	5.8	14
281	Biomarkers increase detection of active smoking and secondhand smoke exposure in critically ill patients*. Critical Care Medicine, 2011, 39, 40-45.	0.9	60
282	A simple classification model for hospital mortality in patients with acute lung injury managed with lung protective ventilation*. Critical Care Medicine, 2011, 39, 2645-2651.	0.9	22
283	Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Critical Care Medicine, 2011, 39, 711-717.	0.9	105
284	Alveolar fluid clearance is faster in women with acute lung injury compared to men. Journal of Critical Care, 2011, 26, 249-256.	2.2	18
285	Randomized, Placebo-controlled Clinical Trial of an Aerosolized \hat{l}^2 ₂ -Agonist for Treatment of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 561-568.	5.6	416
286	Concise Review: Mesenchymal Stem Cells for Acute Lung Injury: Role of Paracrine Soluble Factors. Stem Cells, 2011, 29, 913-919.	3.2	355
287	Priming With Endotoxin Increases Acute Lung Injury in Mice by Enhancing the Severity of Lung Endothelial Injury. Anatomical Record, 2011, 294, 165-172.	1.4	10
288	Active and Passive Cigarette Smoking and Acute Lung Injury after Severe Blunt Trauma. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1660-1665.	5.6	128

#	Article	IF	Citations
289	Acute Lung Failure. Seminars in Respiratory and Critical Care Medicine, 2011, 32, 607-625.	2.1	18
290	Perspective on the Journal 2006–2011. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L829-L829.	2.9	0
291	Proteolytic release of the receptor for advanced glycation end products from in vitro and in situ alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L516-L525.	2.9	54
292	Mesenchymal stem cells for acute lung injury: Preclinical evidence. Critical Care Medicine, 2010, 38, S569-S573.	0.9	144
293	Acute Lung Injury in Patients With Traumatic Injuries: Utility of a Panel of Biomarkers for Diagnosis and Pathogenesis. Journal of Trauma, 2010, 68, 1121-1127.	2.3	139
294	Therapeutic strategies for severe acute lung injury. Critical Care Medicine, 2010, 38, 1644-1650.	0.9	166
295	Elevated PAI-1 is associated with poor clinical outcomes in pediatric patients with acute lung injury. Intensive Care Medicine, 2010, 36, 157-163.	8.2	73
296	Antibacterial Effect of Human Mesenchymal Stem Cells Is Mediated in Part from Secretion of the Antimicrobial Peptide LL-37. Stem Cells, 2010, 28, 2229-2238.	3.2	672
297	Culprits with evolutionary ties. Nature, 2010, 464, 41-42.	27.8	55
298	Simulation of lung alveolar epithelial wound healing in vitro. Journal of the Royal Society Interface, 2010, 7, 1157-1170.	3.4	8
299	Allogeneic Human Mesenchymal Stem Cells Restore Epithelial Protein Permeability in Cultured Human Alveolar Type II Cells by Secretion of Angiopoietin-1*. Journal of Biological Chemistry, 2010, 285, 26211-26222.	3.4	230
300	Polymorphonuclear leukocytes mediate <i>Staphylococcus aureus</i> Panton-Valentine leukocidin-induced lung inflammation and injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5587-5592.	7.1	306
301	What Are the Pathologic and Pathophysiologic Changes That Accompany Acute Lung Injury and ARDS?., 2010,, 82-87.		0
302	Acute Lung Injury: Epidemiology, Pathogenesis, and Treatment. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, 243-252.	1.4	578
303	Prognostic and Pathogenetic Value of Combining Clinical and Biochemical Indices in Patients With Acute Lung Injury. Chest, 2010, 137, 288-296.	0.8	287
304	The utility of clinical predictors of acute lung injury: towards prevention and earlier recognition. Expert Review of Respiratory Medicine, 2010, 4, 785-797.	2.5	27
305	Update on Acute Lung Injury and Critical Care Medicine 2009. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1027-1032.	5.6	18
306	Therapeutic Potential of Mesenchymal Stem Cells for Severe Acute Lung Injury. Chest, 2010, 138, 965-972.	0.8	151

#	Article	IF	Citations
307	Advances and challenges in translating stem cell therapies for clinical diseases. Translational Research, 2010, 156, 107-111.	5.0	17
308	Mesenchymal Stem Cells for Acute Lung Injury. , 2010, , 121-140.		0
309	Alveolar and Distal Airway Epithelial Fluid Transport. , 2010, , 217-225.		0
310	Mesenchymal Stem Cells for the Prevention of Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1039-1041.	5.6	52
311	Simvastatin Decreases Lipopolysaccharide-induced Pulmonary Inflammation in Healthy Volunteers. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 1107-1114.	5.6	221
312	NADPH Oxidase-1 Plays a Crucial Role in Hyperoxia-induced Acute Lung Injury in Mice. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 972-981.	5.6	134
313	Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Medicine, 2009, 35, 248-257.	8.2	108
314	Neutrophil sandwiches injure the microcirculation. Nature Medicine, 2009, 15, 364-366.	30.7	30
315	Potential application of mesenchymal stem cells in acute lung injury. Expert Opinion on Biological Therapy, 2009, 9, 1259-1270.	3.1	131
316	Protective mechanisms of activated protein C in severe inflammatory disorders. British Journal of Pharmacology, 2009, 158, 1034-1047.	5.4	43
317	Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16357-16362.	7.1	653
318	Recent trends in acute lung injury mortality: 1996–2005*. Critical Care Medicine, 2009, 37, 1574-1579.	0.9	398
319	Racial and ethnic disparities in mortality from acute lung injury*. Critical Care Medicine, 2009, 37, 1-6.	0.9	218
320	Clara Cell Protein CC16. Chest, 2009, 135, 1408-1410.	0.8	20
321	Identification of Early Acute Lung Injury at Initial Evaluation in an Acute Care Setting Prior to the Onset of Respiratory Failure. Chest, 2009, 135, 936-943.	0.8	67
322	Measurement of extravascular lung water using the single indicator method in patients: research and potential clinical value. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L547-L558.	2.9	50
323	Elevated Levels of the Receptor for Advanced Glycation End Products, a Marker of Alveolar Epithelial Type I Cell Injury, Predict Impaired Alveolar Fluid Clearance in Isolated Perfused Human Lungs. Chest, 2009, 135, 269-275.	0.8	90
324	4G/5G Polymorphism of Plasminogen Activator Inhibitor -1 Gene Is Associated with Mortality in Intensive Care Unit Patients with Severe Pneumonia. Anesthesiology, 2009, 110, 1086-1091.	2.5	36

#	Article	IF	Citations
325	Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. Journal of Clinical Investigation, 2009, 119, 3450-61.	8.2	342
326	Bone Marrow-Derived Cells Participate in Stromal Remodeling of the Lung Following Acute Bacterial Pneumonia in Mice. Lung, 2008, 186, 179-190.	3.3	22
327	Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Critical Care, 2008, 12, R41.	5.8	138
328	CD47 Deficiency Protects Mice from Lipopolysaccharide-Induced Acute Lung Injury and <i>Escherichia coli</i> Pneumonia. Journal of Immunology, 2008, 180, 6947-6953.	0.8	70
329	Advances in Critical Care for the Nephrologist. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 578-586.	4.5	87
330	Treatment of Acute Lung Injury: Clinical and Experimental Studies. Proceedings of the American Thoracic Society, 2008, 5, 297-299.	3.5	41
331	Randomized Clinical Trial of Activated Protein C for the Treatment of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 618-623.	5.6	263
332	The alveolar epithelium can initiate the extrinsic coagulation cascade through expression of tissue factor. Thorax, 2007, 62, 608-616.	5.6	132
333	Acute Lung Injury Edema Fluid Decreases Net Fluid Transport across Human Alveolar Epithelial Type II Cells. Journal of Biological Chemistry, 2007, 282, 24109-24119.	3.4	73
334	Intrapulmonary Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Survival and Attenuates Endotoxin-Induced Acute Lung Injury in Mice. Journal of Immunology, 2007, 179, 1855-1863.	0.8	836
335	Activation of the $\hat{l}\pm7$ nAChR Reduces Acid-Induced Acute Lung Injury in Mice and Rats. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 186-192.	2.9	160
336	Nonventilatory Treatments for Acute Lung Injury and ARDS. Chest, 2007, 131, 913-920.	0.8	195
337	Pulmonary Dead Space Fraction and Pulmonary Artery Systolic Pressure as Early Predictors of Clinical Outcome in Acute Lung Injury. Chest, 2007, 132, 836-842.	0.8	107
338	Novel Role of the Human Alveolar Epithelium in Regulating Intra-Alveolar Coagulation. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 497-503.	2.9	85
339	Impact of Low and High Tidal Volumes on the Rat Alveolar Epithelial Type II Cell Proteome. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1006-1013.	5.6	15
340	Integrin $\hat{l}\pm v\hat{l}^2 5$ Regulates Lung Vascular Permeability and Pulmonary Endothelial Barrier Function. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 377-386.	2.9	119
341	Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L52-L59.	2.9	106
342	Postobstructive Pulmonary Edema. Chest, 2007, 131, 1742-1746.	0.8	111

#	Article	IF	CITATIONS
343	Early elevation of plasma von Willebrand factor antigen in pediatric acute lung injury is associated with an increased risk of death and prolonged mechanical ventilation*. Pediatric Critical Care Medicine, 2007, 8, 96-101.	0.5	59
344	Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders*. Critical Care Medicine, 2007, 35, 2243-2250.	0.9	232
345	Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury*. Critical Care Medicine, 2007, 35, 2755-2761.	0.9	131
346	Plasma Receptor for Advanced Glycation End-products Predicts Duration of ICU Stay and Mechanical Ventilation in Patients After Lung Transplantation. Journal of Heart and Lung Transplantation, 2007, 26, 675-680.	0.6	74
347	Pulmonary barriers to pneumonia and sepsis. Nature Medicine, 2007, 13, 780-781.	30.7	25
348	Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury *. Critical Care Medicine, 2007, 35, 2755-2761.	0.9	120
349	Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury. Critical Care Medicine, 2007, 35, 2755-61.	0.9	137
350	Outstanding scientists in the world of organ dysfunction. Journal of Organ Dysfunction, 2006, 2, 4-4.	0.3	0
351	Bench-to-bedside review: the role of activated protein C in maintaining endothelial tight junction function and its relationship to organ injury. Critical Care, 2006, 10, 239.	5.8	28
352	Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L1191-L1198.	2.9	166
353	From evidence to clinical practice: Effective implementation of therapeutic hypothermia to improve patient outcome after cardiac arrest*. Critical Care Medicine, 2006, 34, 1865-1873.	0.9	622
354	Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death. Nature Medicine, 2006, 12, 1286-1293.	30.7	307
355	Î ² -Adrenergic Agonist Therapy as a Potential Treatment for Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 254-255.	5.6	38
356	Receptor for Advanced Glycation End-Products Is a Marker of Type I Cell Injury in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1008-1015.	5.6	390
357	Alveolar Epithelial Ion and Fluid Transport. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 10-19.	2.9	104
358	Protective effect of endogenous \hat{l}^2 -adrenergic tone on lung fluid balance in acute bacterial pneumonia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L769-L776.	2.9	70
359	Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type Il cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L242-L249.	2.9	142
360	Pharmacotherapy of Acute Lung Injury and the Acute Respiratory Distress Syndrome. Journal of Intensive Care Medicine, 2006, 21, 119-143.	2.8	192

#	Article	IF	Citations
361	Neutrophils and their Fc receptors are essential in a mouse model of transfusion-related acute lung injury. Journal of Clinical Investigation, 2006, 116, 1615-1623.	8.2	273
362	Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury*. Critical Care Medicine, 2005, 33, 1-6.	0.9	599
363	Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L426-L431.	2.9	180
364	Interleukin- $1\hat{l}^2$ Decreases Expression of the Epithelial Sodium Channel \hat{l}_{\pm} -Subunit in Alveolar Epithelial Cells via a p38 MAPK-dependent Signaling Pathway*. Journal of Biological Chemistry, 2005, 280, 18579-18589.	3.4	158
365	HOâ€1 induction restores câ€AMPâ€dependent lung epithelial fluid transport following severe hemorrhage in rats. FASEB Journal, 2005, 19, 1-25.	0.5	9
366	Pediatric Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 995-1001.	5.6	397
367	Acute Lung Injury and the Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 319-327.	2.9	584
368	Effect of Prone Positioning on Clinical Outcomes in Children With Acute Lung Injury. JAMA - Journal of the American Medical Association, 2005, 294, 229.	7.4	289
369	Acute Pulmonary Edema. New England Journal of Medicine, 2005, 353, 2788-2796.	27.0	601
370	Significance of Von Willebrand Factor in Septic and Nonseptic Patients with Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 766-772.	5.6	265
371	Hydrostatic mechanisms may contribute to the pathogenesis of human re-expansion pulmonary edema. Intensive Care Medicine, 2004, 30, 1921-1926.	8.2	462
372	Bench-to-bedside review: the role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury. Critical Care, 2004, 8, 469.	5.8	73
373	Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2004, 351, 327-336.	27.0	2,302
374	Plasma protein C levels in patients with acute lung injury: Prognostic significance. Critical Care Medicine, 2004, 32, S229-S232.	0.9	51
375	Prevention of Ventilator-Associated Pneumonia. Annals of Internal Medicine, 2004, 140, 486.	3.9	2
376	Selective Decontamination of the Digestive Tract and Prevention of Ventilator-Associated Pneumonia. Annals of Internal Medicine, 2004, 141, 577.	3.9	0
377	Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respiratory Care, 2004, 49, 1008-14.	1.6	71
378	Transforming Growth Factor- \hat{l}^21 Decreases Expression of the Epithelial Sodium Channel $\hat{l}\pm ENaC$ and Alveolar Epithelial Vectorial Sodium and Fluid Transport via an ERK1/2-dependent Mechanism. Journal of Biological Chemistry, 2003, 278, 43939-43950.	3.4	151

#	Article	IF	Citations
379	Future Research Directions in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1027-1035.	5.6	489
380	Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L20-L28.	2.9	309
381	Protein C and thrombomodulin in human acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L514-L521.	2.9	296
382	Hypoxia and \hat{I}^2 2-Agonists Regulate Cell Surface Expression of the Epithelial Sodium Channel in Native Alveolar Epithelial Cells. Journal of Biological Chemistry, 2002, 277, 47318-47324.	3.4	145
383	Alveolar Fluid Clearance in Patients With ARDS*. Chest, 2002, 122, 340S-343S.	0.8	60
384	Pulmonary Dead-Space Fraction as a Risk Factor for Death in the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2002, 346, 1281-1286.	27.0	809
385	Lung Epithelial Fluid Transport and the Resolution of Pulmonary Edema. Physiological Reviews, 2002, 82, 569-600.	28.8	690
386	Low Tidal Volume Reduces Epithelial and Endothelial Injury in Acid-injured Rat Lungs. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 242-249.	5.6	313
387	Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L924-L940.	2.9	293
388	Invited Review: Alveolar edema fluid clearance in the injured lung. Journal of Applied Physiology, 2002, 93, 2207-2213.	2.5	121
389	Keratinocyte growth factor can enhance alveolar epithelial repair by nonmitogenic mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L163-L169.	2.9	97
390	Ventilator-induced lung injury: in vivo and in vitro mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L678-L682.	2.9	111
391	Fas and Fas Ligand Are Up-Regulated in Pulmonary Edema Fluid and Lung Tissue of Patients with Acute Lung Injury and the Acute Respiratory Distress Syndrome. American Journal of Pathology, 2002, 161, 1783-1796.	3.8	299
392	Assessment of lungs rejected for transplantation and implications for donor selection. Lancet, The, 2002, 360, 619-620.	13.7	181
393	Clinical acute lung injury and acute respiratory distress syndrome. Current Treatment Options in Cardiovascular Medicine, 2002, 4, 139-149.	0.9	18
394	von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury. Critical Care Medicine, 2001, 29, 2325-2331.	0.9	138
395	TGF-Î ² is a critical mediator of acute lung injury. Journal of Clinical Investigation, 2001, 107, 1537-1544.	8.2	438
396	Noninvasive ventilation for acute respiratory failure. , 2000, 16, 403-408.		4

#	Article	IF	CITATIONS
397	Initial severity of metabolic acidosis predicts the development of acute lung injury in severely traumatized patients. Critical Care Medicine, 2000, 28, 125-131.	0.9	118
398	Lung Overexpression of the Vascular Endothelial Growth Factor Gene Induces Pulmonary Edema. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 657-664.	2.9	260
399	Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2000, 342, 1301-1308.	27.0	14,454
400	The Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2000, 342, 1334-1349.	27.0	5,867
401	Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L137-L145.	2.9	32
402	Alveolar epithelial fluid transport can be simultaneously upregulated by both KGF and \hat{l}^2 -agonist therapy. Journal of Applied Physiology, 1999, 87, 1852-1860.	2.5	95
403	Exacerbation of Acute Pulmonary Edema During Assisted Mechanical Ventilation Using a Low-Tidal Volume, Lung-Protective Ventilator Strategy. Chest, 1999, 116, 1826-1832.	0.8	73
404	Interobserver Variability in Applying a Radiographic Definition for ARDS. Chest, 1999, 116, 1347-1353.	0.8	317
405	Effects of ATPâ€Sensitive Potassium Channel Opener on Potassium Transport and Alveolar Fluid Clearance in the Resected Human Lung. Basic and Clinical Pharmacology and Toxicology, 1998, 83, 16-22.	0.0	37
406	Increased alveolar fluid clearance following thoracotomy: Report of a case and results of an analysis. Surgery Today, 1997, 27, 762-765.	1.5	4
407	Right-Heart Catheterization is a Diagnostic Procedure not a Therapeutic Intervention. Journal of Intensive Care Medicine, 1991, 6, 101-104.	2.8	3
408	Intact Epithelial Barrier Function Is Critical for the Resolution of Alveolar Edema in Humans. The American Review of Respiratory Disease, 1990, 142, 1250-1257.	2.9	587
409	An Expanded Definition of the Adult Respiratory Distress Syndrome. The American Review of Respiratory Disease, 1988, 138, 720-723.	2.9	2,578
410	Reply to: SARS-CoV2 Endotheliopathy: Insights from Single Cell RNAseq. American Journal of Respiratory and Critical Care Medicine, 0, , .	5.6	0