Michael A Matthay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636220/publications.pdf

Version: 2024-02-01

410 papers 74,658 citations

119 h-index 264 g-index

432 all docs 432 docs citations

times ranked

432

42015 citing authors

#	Article	IF	CITATIONS
1	Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2000, 342, 1301-1308.	13.9	14,454
2	The Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2000, 342, 1334-1349.	13.9	5,867
3	An Expanded Definition of the Adult Respiratory Distress Syndrome. The American Review of Respiratory Disease, 1988, 138, 720-723.	2.9	2,578
4	Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2004, 351, 327-336.	13.9	2,302
5	The acute respiratory distress syndrome. Journal of Clinical Investigation, 2012, 122, 2731-2740.	3.9	1,434
6	Acute respiratory distress syndrome. Nature Reviews Disease Primers, 2019, 5, 18.	18.1	1,364
7	Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respiratory Medicine,the, 2014, 2, 611-620.	5.2	992
8	Intrapulmonary Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Survival and Attenuates Endotoxin-Induced Acute Lung Injury in Mice. Journal of Immunology, 2007, 179, 1855-1863.	0.4	836
9	The Acute Respiratory Distress Syndrome: Pathogenesis and Treatment. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 147-163.	9.6	818
10	Pulmonary Dead-Space Fraction as a Risk Factor for Death in the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2002, 346, 1281-1286.	13.9	809
11	Lung Epithelial Fluid Transport and the Resolution of Pulmonary Edema. Physiological Reviews, 2002, 82, 569-600.	13.1	690
12	Antibacterial Effect of Human Mesenchymal Stem Cells Is Mediated in Part from Secretion of the Antimicrobial Peptide LL-37. Stem Cells, 2010, 28, 2229-2238.	1.4	672
13	Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16357-16362.	3.3	653
14	Sepsis: pathophysiology and clinical management. BMJ, The, 2016, 353, i1585.	3.0	653
15	From evidence to clinical practice: Effective implementation of therapeutic hypothermia to improve patient outcome after cardiac arrest*. Critical Care Medicine, 2006, 34, 1865-1873.	0.4	622
16	Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respiratory Medicine, the, 2015, 3, 24-32.	5.2	614
17	Acute Pulmonary Edema. New England Journal of Medicine, 2005, 353, 2788-2796.	13.9	601
18	Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury*. Critical Care Medicine, 2005, 33, 1-6.	0.4	599

#	Article	IF	Citations
19	Intact Epithelial Barrier Function Is Critical for the Resolution of Alveolar Edema in Humans. The American Review of Respiratory Disease, 1990, 142, 1250-1257.	2.9	587
20	Acute Lung Injury and the Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 319-327.	1.4	584
21	Acute Lung Injury: Epidemiology, Pathogenesis, and Treatment. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, 243-252.	0.7	578
22	ls a "Cytokine Storm―Relevant to COVID-19?. JAMA Internal Medicine, 2020, 180, 1152.	2.6	577
23	Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 2015, 517, 621-625.	13.7	562
24	Human Mesenchymal Stem Cell Microvesicles for Treatment of <i>Escherichia coli</i> Endotoxin-Induced Acute Lung Injury in Mice. Stem Cells, 2014, 32, 116-125.	1.4	550
25	Transfusion-related acute lung injury: incidence and risk factors. Blood, 2012, 119, 1757-1767.	0.6	493
26	Future Research Directions in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1027-1035.	2.5	489
27	Hydrostatic mechanisms may contribute to the pathogenesis of human re-expansion pulmonary edema. Intensive Care Medicine, 2004, 30, 1921-1926.	3.9	462
28	Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respiratory Medicine, the, 2018, 6, 691-698.	5.2	455
29	Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respiratory Medicine,the, 2019, 7, 154-162.	5.2	443
30	Rosuvastatin for Sepsis-Associated Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2014, 370, 2191-2200.	13.9	439
31	TGF- \hat{l}^2 is a critical mediator of acute lung injury. Journal of Clinical Investigation, 2001, 107, 1537-1544.	3.9	438
32	What drives neutrophils to the alveoli in ARDS?. Thorax, 2017, 72, 1-3.	2.7	418
33	Randomized, Placebo-controlled Clinical Trial of an Aerosolized β ₂ -Agonist for Treatment of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 561-568.	2.5	416
34	Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 2016, 34, 2210-2223.	1.4	401
35	Recent trends in acute lung injury mortality: 1996–2005*. Critical Care Medicine, 2009, 37, 1574-1579.	0.4	398
36	Pediatric Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 995-1001.	2.5	397

#	Article	IF	CITATIONS
37	Therapeutic Effects of Human Mesenchymal Stem Cell–derived Microvesicles in Severe Pneumonia in Mice. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 324-336.	2.5	392
38	Receptor for Advanced Glycation End-Products Is a Marker of Type I Cell Injury in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1008-1015.	2.5	390
39	Concise Review: Mesenchymal Stem Cells for Acute Lung Injury: Role of Paracrine Soluble Factors. Stem Cells, 2011, 29, 913-919.	1.4	355
40	Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications, 2020, 11, 1920.	5.8	346
41	Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. Journal of Clinical Investigation, 2009, 119, 3450-61.	3.9	342
42	Interobserver Variability in Applying a Radiographic Definition for ARDS. Chest, 1999, 116, 1347-1353.	0.4	317
43	Low Tidal Volume Reduces Epithelial and Endothelial Injury in Acid-injured Rat Lungs. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 242-249.	2.5	313
44	Therapeutic Effects of Human Mesenchymal Stem Cells in <i>Ex Vivo</i> Human Lungs Injured with Live Bacteria. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 751-760.	2.5	313
45	Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L20-L28.	1.3	309
46	Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiological Reviews, 2020, 100, 1065-1075.	13.1	308
47	Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death. Nature Medicine, 2006, 12, 1286-1293.	15.2	307
48	Mesenchymal stem cells enhance survival and bacterial clearance in murine <i>Escherichia coli </i> pneumonia. Thorax, 2012, 67, 533-539.	2.7	307
49	Polymorphonuclear leukocytes mediate <i>Staphylococcus aureus</i> Panton-Valentine leukocidin-induced lung inflammation and injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5587-5592.	3.3	306
50	Fas and Fas Ligand Are Up-Regulated in Pulmonary Edema Fluid and Lung Tissue of Patients with Acute Lung Injury and the Acute Respiratory Distress Syndrome. American Journal of Pathology, 2002, 161, 1783-1796.	1.9	299
51	Protein C and thrombomodulin in human acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L514-L521.	1.3	296
52	Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L924-L940.	1.3	293
53	Effect of Prone Positioning on Clinical Outcomes in Children With Acute Lung Injury. JAMA - Journal of the American Medical Association, 2005, 294, 229.	3.8	289
54	Prognostic and Pathogenetic Value of Combining Clinical and Biochemical Indices in Patients With Acute Lung Injury. Chest, 2010, 137, 288-296.	0.4	287

#	Article	IF	Citations
55	Distinct Molecular Phenotypes of Direct vs Indirect ARDS in Single-Center and Multicenter Studies. Chest, 2015, 147, 1539-1548.	0.4	283
56	Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1003-L1013.	1.3	278
57	Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 031-039.	0.8	276
58	Neutrophils and their Fc receptors are essential in a mouse model of transfusion-related acute lung injury. Journal of Clinical Investigation, 2006, 116, 1615-1623.	3.9	273
59	Regulation and Repair of the Alveolar-Capillary Barrier in Acute Lung Injury. Annual Review of Physiology, 2013, 75, 593-615.	5.6	266
60	Significance of Von Willebrand Factor in Septic and Nonseptic Patients with Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 766-772.	2.5	265
61	Randomized Clinical Trial of Activated Protein C for the Treatment of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 618-623.	2.5	263
62	Lung Overexpression of the Vascular Endothelial Growth Factor Gene Induces Pulmonary Edema. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 657-664.	1.4	260
63	Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet Respiratory Medicine, the, 2020, 8, 433-434.	5.2	254
64	Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12353-E12362.	3. 3	249
65	Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax, 2018, 73, 840-846.	2.7	244
66	Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders*. Critical Care Medicine, 2007, 35, 2243-2250.	0.4	232
67	Allogeneic Human Mesenchymal Stem Cells Restore Epithelial Protein Permeability in Cultured Human Alveolar Type II Cells by Secretion of Angiopoietin-1*. Journal of Biological Chemistry, 2010, 285, 26211-26222.	1.6	230
68	Pulmonary toxicity of e-cigarettes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L193-L206.	1.3	225
69	Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Medicine, 2018, 44, 1859-1869.	3.9	223
70	Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respiratory Medicine, the, 2014, 2, 1016-1026.	5. 2	222
71	Simvastatin Decreases Lipopolysaccharide-induced Pulmonary Inflammation in Healthy Volunteers. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 1107-1114.	2.5	221
72	Plasma Angiopoietin-2 Predicts the Onset of Acute Lung Injury in Critically Ill Patients. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 736-742.	2. 5	220

#	Article	IF	Citations
73	Racial and ethnic disparities in mortality from acute lung injury*. Critical Care Medicine, 2009, 37, 1-6.	0.4	218
74	Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respiratory Medicine, the, 2017, 5, 524-534.	5.2	213
75	Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax, 2015, 70, 48-56.	2.7	207
76	Global absence and targeting of protective immune states in severe COVID-19. Nature, 2021, 591, 124-130.	13.7	206
77	Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nature Cell Biology, 2017, 19, 904-914.	4.6	202
78	Biomarkers in Acute Lung Injury: Insights into the Pathogenesis of Acute Lung Injury. Critical Care Clinics, 2011, 27, 355-377.	1.0	199
79	Nonventilatory Treatments for Acute Lung Injury and ARDS. Chest, 2007, 131, 913-920.	0.4	195
80	Plasma angiopoietin-2 in clinical acute lung injury. Critical Care Medicine, 2012, 40, 1731-1737.	0.4	194
81	Pharmacotherapy of Acute Lung Injury and the Acute Respiratory Distress Syndrome. Journal of Intensive Care Medicine, 2006, 21, 119-143.	1.3	192
82	Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 333-341.	2.5	186
83	Assessment of lungs rejected for transplantation and implications for donor selection. Lancet, The, 2002, 360, 619-620.	6.3	181
84	Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L426-L431.	1.3	180
85	F <scp>ifty</scp> Y <scp>ears</scp> <scp>of</scp> R <scp>esearch</scp> <scp>in</scp> ARDS.Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 266-273.	2.5	179
86	Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3621-3626.	3.3	174
87	Timing of Intubation and Clinical Outcomes in Adults With Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2016, 44, 120-129.	0.4	170
88	Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Critical Care, 2013, 17, R253.	2.5	169
89	Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L1191-L1198.	1.3	166
90	Therapeutic strategies for severe acute lung injury. Critical Care Medicine, 2010, 38, 1644-1650.	0.4	166

#	Article	IF	Citations
91	Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe <i>E. coli</i> pneumonia. Thorax, 2019, 74, 43-50.	2.7	166
92	Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. Lancet Respiratory Medicine, the, 2020, 8, 247-257.	5.2	165
93	Activation of the $\hat{l}\pm7$ nAChR Reduces Acid-Induced Acute Lung Injury in Mice and Rats. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 186-192.	1.4	160
94	Interleukin- $1\hat{l}^2$ Decreases Expression of the Epithelial Sodium Channel \hat{l}_\pm -Subunit in Alveolar Epithelial Cells via a p38 MAPK-dependent Signaling Pathway*. Journal of Biological Chemistry, 2005, 280, 18579-18589.	1.6	158
95	Transforming Growth Factor- \hat{l}^21 Decreases Expression of the Epithelial Sodium Channel $\hat{l}\pm$ ENaC and Alveolar Epithelial Vectorial Sodium and Fluid Transport via an ERK1/2-dependent Mechanism. Journal of Biological Chemistry, 2003, 278, 43939-43950.	1.6	151
96	Therapeutic Potential of Mesenchymal Stem Cells for Severe Acute Lung Injury. Chest, 2010, 138, 965-972.	0.4	151
97	Negative-Pressure Pulmonary Edema. Chest, 2016, 150, 927-933.	0.4	147
98	Hypoxia and \hat{l}^2 2-Agonists Regulate Cell Surface Expression of the Epithelial Sodium Channel in Native Alveolar Epithelial Cells. Journal of Biological Chemistry, 2002, 277, 47318-47324.	1.6	145
99	Mesenchymal stem cells for acute lung injury: Preclinical evidence. Critical Care Medicine, 2010, 38, S569-S573.	0.4	144
100	One-year mortality and predictors of death among hospital survivors of acute respiratory distress syndrome. Intensive Care Medicine, 2014, 40, 388-396.	3.9	144
101	Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature, 2022, 607, 351-355.	13.7	143
102	Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L242-L249.	1.3	142
103	Acute Lung Injury in Patients With Traumatic Injuries: Utility of a Panel of Biomarkers for Diagnosis and Pathogenesis. Journal of Trauma, 2010, 68, 1121-1127.	2.3	139
104	von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury. Critical Care Medicine, 2001, 29, 2325-2331.	0.4	138
105	Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Critical Care, 2008, 12, R41.	2.5	138
106	Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1102-L1113.	1.3	137
107	Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury. Critical Care Medicine, 2007, 35, 2755-61.	0.4	137
108	NADPH Oxidase-1 Plays a Crucial Role in Hyperoxia-induced Acute Lung Injury in Mice. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 972-981.	2.5	134

#	Article	IF	Citations
109	Resolution of Pulmonary Edema. Thirty Years of Progress. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1301-1308.	2.5	134
110	Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax, 2014, 69, 819-825.	2.7	133
111	The alveolar epithelium can initiate the extrinsic coagulation cascade through expression of tissue factor. Thorax, 2007, 62, 608-616.	2.7	132
112	Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. Journal of Immunology, 2015, 195, 875-881.	0.4	132
113	Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury*. Critical Care Medicine, 2007, 35, 2755-2761.	0.4	131
114	Potential application of mesenchymal stem cells in acute lung injury. Expert Opinion on Biological Therapy, 2009, 9, 1259-1270.	1.4	131
115	Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Medicine, 2016, 42, 1427-1436.	3.9	130
116	Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells, 2017, 35, 316-324.	1.4	130
117	Active and Passive Cigarette Smoking and Acute Lung Injury after Severe Blunt Trauma. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1660-1665.	2.5	128
118	Metabolomic Derangements Are Associated with Mortality in Critically Ill Adult Patients. PLoS ONE, 2014, 9, e87538.	1.1	127
119	Invited Review: Alveolar edema fluid clearance in the injured lung. Journal of Applied Physiology, 2002, 93, 2207-2213.	1.2	121
120	Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury *. Critical Care Medicine, 2007, 35, 2755-2761.	0.4	120
121	Integrin $\hat{l}\pm v\hat{l}^2$ 5 Regulates Lung Vascular Permeability and Pulmonary Endothelial Barrier Function. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 377-386.	1.4	119
122	Initial severity of metabolic acidosis predicts the development of acute lung injury in severely traumatized patients. Critical Care Medicine, 2000, 28, 125-131.	0.4	118
123	Heterogeneity in sepsis: new biological evidence with clinical applications. Critical Care, 2019, 23, 80.	2.5	118
124	Mesenchymal Stem Cells and Idiopathic Pulmonary Fibrosis. Potential for Clinical Testing. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 133-140.	2.5	116
125	Ventilator-induced lung injury: in vivo and in vitro mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L678-L682.	1.3	111
126	Postobstructive Pulmonary Edema. Chest, 2007, 131, 1742-1746.	0.4	111

#	Article	IF	CITATIONS
127	Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Medicine, 2009, 35, 248-257.	3.9	108
128	Clinician-Family Communication About Patients' Values and Preferences in Intensive Care Units. JAMA Internal Medicine, 2019, 179, 676.	2.6	108
129	Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nature Cell Biology, 2022, 24, 10-23.	4.6	108
130	Pulmonary Dead Space Fraction and Pulmonary Artery Systolic Pressure as Early Predictors of Clinical Outcome in Acute Lung Injury. Chest, 2007, 132, 836-842.	0.4	107
131	Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L52-L59.	1.3	106
132	miR-34 miRNAs Regulate Cellular Senescence in Type II Alveolar Epithelial Cells of Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE, 2016, 11, e0158367.	1.1	106
133	Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Medicine, 2020, 46, 2136-2152.	3.9	106
134	Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Critical Care Medicine, 2011, 39, 711-717.	0.4	105
135	Alveolar Epithelial Ion and Fluid Transport. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 10-19.	1.4	104
136	Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L975-L985.	1.3	101
137	Dexamethasone in hospitalised patients with COVID-19: addressing uncertainties. Lancet Respiratory Medicine, the, 2020, 8, 1170-1172.	5.2	98
138	Keratinocyte growth factor can enhance alveolar epithelial repair by nonmitogenic mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L163-L169.	1.3	97
139	Keratinocyte Growth Factor Promotes Epithelial Survival and Resolution in a Human Model of Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1520-1529.	2.5	96
140	Alveolar epithelial fluid transport can be simultaneously upregulated by both KGF and \hat{l}^2 -agonist therapy. Journal of Applied Physiology, 1999, 87, 1852-1860.	1.2	95
141	Cigarette Smoke Exposure and the Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2015, 43, 1790-1797.	0.4	92
142	Elevated Levels of the Receptor for Advanced Glycation End Products, a Marker of Alveolar Epithelial Type I Cell Injury, Predict Impaired Alveolar Fluid Clearance in Isolated Perfused Human Lungs. Chest, 2009, 135, 269-275.	0.4	90
143	Clinical review: Early treatment of acute lung injury - paradigm shift toward prevention and treatment prior to respiratory failure. Critical Care, 2012, 16, 223.	2.5	90
144	Diagnostic workup for ARDS patients. Intensive Care Medicine, 2016, 42, 674-685.	3.9	89

#	Article	IF	CITATIONS
145	Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Medicine, 2018, 44, 1849-1858.	3.9	89
146	Secondary peritonitis: principles of diagnosis and intervention. BMJ: British Medical Journal, 2018, 361, k1407.	2.4	88
147	Advances in Critical Care for the Nephrologist. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 578-586.	2.2	87
148	Novel Role of the Human Alveolar Epithelium in Regulating Intra-Alveolar Coagulation. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 497-503.	1.4	85
149	Antiâ€inflammatory effects of β ₂ adrenergic receptor agonists in experimental acute lung injury. FASEB Journal, 2012, 26, 2137-2144.	0.2	84
150	Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L395-L406.	1.3	84
151	Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Medicine, 2018, 44, 1388-1399.	3.9	82
152	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	1.4	82
153	Inhibiting Brutonâ∈™s tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L52-L58.	1.3	81
154	Mesenchymal Stem Cells and Acute Lung Injury. Critical Care Clinics, 2011, 27, 719-733.	1.0	80
155	Early Acute Lung Injury. Critical Care Medicine, 2013, 41, 1929-1937.	0.4	80
156	The Berlin definition of acute respiratory distress syndrome: should patients receiving high-flow nasal oxygen be included?. Lancet Respiratory Medicine, the, 2021, 9, 933-936.	5.2	80
157	Claudin-4 Levels Are Associated with Intact Alveolar Fluid Clearance in Human Lungs. American Journal of Pathology, 2011, 179, 1081-1087.	1.9	79
158	The Association Between Physiologic Dead-Space Fraction and Mortality in Subjects With ARDS Enrolled in a Prospective Multi-Center Clinical Trial. Respiratory Care, 2014, 59, 1611-1618.	0.8	78
159	Mesenchymal stem cell-derived extracellular vesicles attenuate pulmonary vascular permeability and lung injury induced by hemorrhagic shock and trauma. Journal of Trauma and Acute Care Surgery, 2018, 84, 245-256.	1.1	76
160	Plasma Receptor for Advanced Glycation End-products Predicts Duration of ICU Stay and Mechanical Ventilation in Patients After Lung Transplantation. Journal of Heart and Lung Transplantation, 2007, 26, 675-680.	0.3	74
161	Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L224-L231.	1.3	74
162	Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis. Intensive Care Medicine, 2020, 46, 1222-1231.	3.9	74

#	Article	IF	CITATIONS
163	Exacerbation of Acute Pulmonary Edema During Assisted Mechanical Ventilation Using a Low-Tidal Volume, Lung-Protective Ventilator Strategy. Chest, 1999, 116, 1826-1832.	0.4	73
164	Bench-to-bedside review: the role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury. Critical Care, 2004, 8, 469.	2.5	73
165	Acute Lung Injury Edema Fluid Decreases Net Fluid Transport across Human Alveolar Epithelial Type II Cells. Journal of Biological Chemistry, 2007, 282, 24109-24119.	1.6	73
166	Elevated PAI-1 is associated with poor clinical outcomes in pediatric patients with acute lung injury. Intensive Care Medicine, 2010, 36, 157-163.	3.9	73
167	Genome Wide Association Identifies PPFIA1 as a Candidate Gene for Acute Lung Injury Risk Following Major Trauma. PLoS ONE, 2012, 7, e28268.	1.1	73
168	Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respiratory Care, 2004, 49, 1008-14.	0.8	71
169	Protective effect of endogenous \hat{l}^2 -adrenergic tone on lung fluid balance in acute bacterial pneumonia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L769-L776.	1.3	70
170	CD47 Deficiency Protects Mice from Lipopolysaccharide-Induced Acute Lung Injury and <i>Escherichia coli</i> Pneumonia. Journal of Immunology, 2008, 180, 6947-6953.	0.4	70
171	Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Respiratory Medicine, the, 2017, 5, 484-491.	5. 2	70
172	Association of Elevated Plasma Interleukin-18 Level With Increased Mortality in a Clinical Trial of Statin Treatment for Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2019, 47, 1089-1096.	0.4	70
173	Randomized Clinical Trial of a Combination of an Inhaled Corticosteroid and Beta Agonist in Patients at Risk of Developing the Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2017, 45, 798-805.	0.4	69
174	Identification of Early Acute Lung Injury at Initial Evaluation in an Acute Care Setting Prior to the Onset of Respiratory Failure. Chest, 2009, 135, 936-943.	0.4	67
175	Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis. Lancet Respiratory Medicine, the, 2022, 10, 367-377.	5.2	64
176	Endothelial biomarkers in human sepsis: pathogenesis and prognosis for ARDS. Pulmonary Circulation, 2018, 8, 1-12.	0.8	62
177	Alveolar Fluid Clearance in Patients With ARDS*. Chest, 2002, 122, 340S-343S.	0.4	60
178	Biomarkers increase detection of active smoking and secondhand smoke exposure in critically ill patients*. Critical Care Medicine, 2011, 39, 40-45.	0.4	60
179	Viral Pathogens and Acute Lung Injury: Investigations Inspired by the SARS Epidemic and the 2009 H1N1 Influenza Pandemic. Seminars in Respiratory and Critical Care Medicine, 2013, 34, 475-486.	0.8	60
180	Meta-Analysis of Preclinical Studies of Fibrinolytic Therapy for Acute Lung Injury. Frontiers in Immunology, 2018, 9, 1898.	2.2	60

#	Article	IF	CITATIONS
181	Early elevation of plasma von Willebrand factor antigen in pediatric acute lung injury is associated with an increased risk of death and prolonged mechanical ventilation*. Pediatric Critical Care Medicine, 2007, 8, 96-101.	0.2	59
182	The Berlin Definition of ARDS versus Pathological Evidence of Diffuse Alveolar Damage. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 675-677.	2.5	59
183	Cigarette smokers have exaggerated alveolar barrier disruption in response to lipopolysaccharide inhalation. Thorax, 2016, 71, 1130-1136.	2.7	59
184	Long-Term Ozone Exposure Increases the Risk of Developing the Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1143-1150.	2.5	59
185	Acute kidney injury subphenotypes based on creatinine trajectory identifies patients at increased risk of death. Critical Care, 2016, 20, 372.	2.5	58
186	The Association Between a Darc Gene Polymorphism and Clinical Outcomes in African American Patients With Acute Lung Injury. Chest, 2012, 141, 1160-1169.	0.4	57
187	Is there still a role for the lung injury score in the era of the Berlin definition ARDS?. Annals of Intensive Care, 2014, 4, 4.	2.2	56
188	Responses to a Neutralizing Monoclonal Antibody for Hospitalized Patients With COVID-19 According to Baseline Antibody and Antigen Levels. Annals of Internal Medicine, 2022, 175, 234-243.	2.0	56
189	Culprits with evolutionary ties. Nature, 2010, 464, 41-42.	13.7	55
190	Alveolar Fluid Clearance in Pathologically Relevant Conditions: In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Frontiers in Immunology, 2017, 8, 371.	2.2	55
191	Proteolytic release of the receptor for advanced glycation end products from in vitro and in situ alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L516-L525.	1.3	54
192	The acute respiratory distress syndrome following isolated severe traumatic brain injury. Journal of Trauma and Acute Care Surgery, 2016, 80, 989-997.	1.1	54
193	Validation of two multiplex platforms to quantify circulating markers of inflammation and endothelial injury in severe infection. PLoS ONE, 2017, 12, e0175130.	1.1	54
194	Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Annals of Intensive Care, 2014, 4, 22.	2.2	53
195	Mesenchymal Stem Cells for the Prevention of Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1039-1041.	2.5	52
196	Plasma protein C levels in patients with acute lung injury: Prognostic significance. Critical Care Medicine, 2004, 32, S229-S232.	0.4	51
197	Measurement of extravascular lung water using the single indicator method in patients: research and potential clinical value. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L547-L558.	1.3	50
198	Agonist of growth hormone-releasing hormone reduces pneumolysin-induced pulmonary permeability edema. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2084-2089.	3.3	50

#	Article	IF	Citations
199	Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. Journal of Clinical Investigation, 2020, 130, 6218-6221.	3.9	50
200	A Novel Tumor Necrosis Factor–mediated Mechanism of Direct Epithelial Sodium Channel Activation. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 522-532.	2.5	49
201	Plasma sRAGE Acts as a Genetically Regulated Causal Intermediate in Sepsis-associated Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 47-56.	2.5	49
202	Contemporary strategies to improve clinical trial design for critical care research: insights from the First Critical Care Clinical Trialists Workshop. Intensive Care Medicine, 2020, 46, 930-942.	3.9	49
203	Extracellular Vesicles: A New Frontier for Research in Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 15-24.	1.4	48
204	Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS. JCI Insight, 2021, 6, .	2.3	48
205	Silencing Bruton's tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L435-L448.	1.3	47
206	Low to Moderate Air Pollutant Exposure and Acute Respiratory Distress Syndrome after Severe Trauma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 62-70.	2.5	47
207	Tracheal aspirate RNA sequencing identifies distinct immunological features of COVID-19 ARDS. Nature Communications, 2021, 12, 5152.	5.8	47
208	Dose-Dependent Pulmonary Toxicity of Aerosolized Vitamin E Acetate. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 748-757.	1.4	45
209	Latent class analysis-derived subphenotypes are generalisable to observational cohorts of acute respiratory distress syndrome: a prospective study. Thorax, 2022, 77, 13-21.	2.7	45
210	Beyond Low Tidal Volume Ventilation: Treatment Adjuncts for Severe Respiratory Failure in Acute Respiratory Distress Syndrome. Critical Care Medicine, 2018, 46, 1820-1831.	0.4	44
211	Protective mechanisms of activated protein C in severe inflammatory disorders. British Journal of Pharmacology, 2009, 158, 1034-1047.	2.7	43
212	Prevalence and Impact of Active and Passive Cigarette Smoking in Acute Respiratory Distress Syndrome. Critical Care Medicine, 2014, 42, 2058-2068.	0.4	43
213	IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight, 2016, 1, e87871.	2.3	42
214	Treatment of Acute Lung Injury: Clinical and Experimental Studies. Proceedings of the American Thoracic Society, 2008, 5, 297-299.	3.5	41
215	Elevated soluble thrombomodulin is associated with organ failure and mortality in children with acute respiratory distress syndrome (ARDS): a prospective observational cohort study. Critical Care, 2015, 19, 435.	2.5	41
216	Incorporating Inflammation into Mortality Risk in Pediatric Acute Respiratory Distress Syndrome. Critical Care Medicine, 2017, 45, 858-866.	0.4	41

#	Article	IF	Citations
217	Recipient clinical risk factors predominate in possible transfusionâ€related acute lung injury. Transfusion, 2015, 55, 947-952.	0.8	40
218	Estimating Dead-Space Fraction for Secondary Analyses of Acute Respiratory Distress Syndrome Clinical Trials. Critical Care Medicine, 2015, 43, 1026-1035.	0.4	40
219	Identifying Clinical Research Priorities in Adult Pulmonary and Critical Care. NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 511-523.	2.5	40
220	Proteolytic Regulation of Epithelial Sodium Channels by Urokinase Plasminogen Activator. Journal of Biological Chemistry, 2015, 290, 5241-5255.	1.6	39
221	Î ² -Adrenergic Agonist Therapy as a Potential Treatment for Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 254-255.	2.5	38
222	Cytokine Profiles of Severe Influenza Virus-Related Complications in Children. Frontiers in Immunology, 2017, 8, 1423.	2.2	38
223	Biological Mechanisms of COVID-19 Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1489-1491.	2.5	38
224	Effects of ATPâ€Sensitive Potassium Channel Opener on Potassium Transport and Alveolar Fluid Clearance in the Resected Human Lung. Basic and Clinical Pharmacology and Toxicology, 1998, 83, 16-22.	0.0	37
225	Therapeutic Potential of Mesenchymal Stromal Cells for Acute Respiratory Distress Syndrome. Annals of the American Thoracic Society, 2015, 12, S54-S57.	1.5	37
226	Possible hepatotoxicity of IQOS. Tobacco Control, 2018, 27, s39-s40.	1.8	37
227	Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L703-L709.	1.3	36
228	Lung inflammatory environments differentially alter mesenchymal stromal cell behavior. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L823-L831.	1.3	36
229	4G/5G Polymorphism of Plasminogen Activator Inhibitor -1 Gene Is Associated with Mortality in Intensive Care Unit Patients with Severe Pneumonia. Anesthesiology, 2009, 110, 1086-1091.	1.3	36
230	Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Frontiers in Immunology, 2017, 8, 842.	2.2	35
231	Promises and challenges of personalized medicine to guide ARDS therapy. Critical Care, 2021, 25, 404.	2.5	35
232	Accumulation of BDCA1+ Dendritic Cells in Interstitial Fibrotic Lung Diseases and Th2-High Asthma. PLoS ONE, 2014, 9, e99084.	1.1	34
233	Applying metabolomics to uncover novel biology in ARDS. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L957-L961.	1.3	34
234	Molecular programs of fibrotic change in aging human lung. Nature Communications, 2021, 12, 6309.	5.8	33

#	Article	IF	Citations
235	Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L137-L145.	1.3	32
236	Body Temperature and Mortality in Patients with Acute Respiratory Distress Syndrome. American Journal of Critical Care, 2015, 24, 15-23.	0.8	32
237	A Simple and Robust Bedside Model for Mortality Risk in Pediatric Patients With Acute Respiratory Distress Syndrome*. Pediatric Critical Care Medicine, 2016, 17, 907-916.	0.2	31
238	Designing an ARDS trial for 2020 and beyond: focus on enrichment strategies. Intensive Care Medicine, 2020, 46, 2153-2156.	3.9	31
239	IL-6 Receptor Antagonist Therapy for Patients Hospitalized for COVID-19. JAMA - Journal of the American Medical Association, 2021, 326, 483.	3.8	31
240	Neutrophil sandwiches injure the microcirculation. Nature Medicine, 2009, 15, 364-366.	15.2	30
241	Inhalation therapies in acute respiratory distress syndrome. Annals of Translational Medicine, 2017, 5, 293-293.	0.7	30
242	Surfactant Protein D Is Associated With Severe Pediatric ARDS, Prolonged Ventilation, and Death in Children With Acute RespiratoryÂFailure. Chest, 2020, 158, 1027-1035.	0.4	30
243	COVID-19–associated Lung Microvascular Endotheliopathy: A "From the Bench―Perspective. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 961-972.	2.5	30
244	Cell Therapy for Lung Diseases. Report from an NIH–NHLBI Workshop, November 13–14, 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 370-375.	2.5	29
245	Therapeutic Effects of Hyaluronic Acid in Bacterial Pneumonia in <i>Ex Vivo</i> Perfused Human Lungs. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1234-1245.	2.5	29
246	Bench-to-bedside review: the role of activated protein C in maintaining endothelial tight junction function and its relationship to organ injury. Critical Care, 2006, 10, 239.	2.5	28
247	Derivation and validation of a two-biomarker panel for diagnosis of ARDS in patients with severe traumatic injuries. Trauma Surgery and Acute Care Open, 2017, 2, e000121.	0.8	28
248	Intratracheal instillation of alveolar type II cells enhances recovery from acute lung injury in rats. Journal of Heart and Lung Transplantation, 2018, 37, 782-791.	0.3	28
249	A prospective investigation of interleukin-8 levels in pediatric acute respiratory failure and acute respiratory distress syndrome. Critical Care, 2019, 23, 128.	2.5	28
250	Positive Cumulative Fluid Balance Is Associated With Mortality in Pediatric Acute Respiratory Distress Syndrome in the Setting of Acute Kidney Injury. Pediatric Critical Care Medicine, 2019, 20, 323-331.	0.2	28
251	The utility of clinical predictors of acute lung injury: towards prevention and earlier recognition. Expert Review of Respiratory Medicine, 2010, 4, 785-797.	1.0	27
252	Comparison of thermodilution measured extravascular lung water with chest radiographic assessment of pulmonary oedema in patients with acute lung injury. Annals of Intensive Care, 2013, 3, 25.	2.2	27

#	Article	IF	CITATIONS
253	Peripheral blood leukocyte telomere length is associated with survival of sepsis patients. European Respiratory Journal, 2020, 55, 1901044.	3.1	27
254	Patterns and Trends in Advance Care Planning Among Older Adults Who Received Intensive Care at the End of Life. JAMA Internal Medicine, 2020, 180, 786.	2.6	27
255	Combined Mesenchymal Stromal Cell Therapy and Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome. A Randomized Controlled Trial in Sheep. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 383-392.	2.5	27
256	Reperfusion pulmonary edema in children with tetralogy of Fallot, pulmonary atresia, and major aortopulmonary collateral arteries undergoing unifocalization procedures: A pilot study examining potential pathophysiologic mechanisms and clinical significance. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1560-1565.	0.4	26
257	Cigarette Smoke Exposure Worsens Endotoxin-Induced Lung Injury and Pulmonary Edema in Mice. Nicotine and Tobacco Research, 2017, 19, 1033-1039.	1.4	26
258	A Multicenter Study of the Causes and Consequences of Optimistic Expectations About Prognosis by Surrogate Decision-Makers in ICUs*. Critical Care Medicine, 2019, 47, 1184-1193.	0.4	26
259	The ABO histo-blood group, endothelial activation, and acute respiratory distress syndrome risk in critical illness. Journal of Clinical Investigation, 2021, 131, .	3.9	26
260	Pulmonary barriers to pneumonia and sepsis. Nature Medicine, 2007, 13, 780-781.	15.2	25
261	Association of common genetic variation in the protein C pathway genes with clinical outcomes in acute respiratory distress syndrome. Critical Care, 2016, 20, 151.	2.5	25
262	External validation of a biomarker and clinical prediction model for hospital mortality in acute respiratory distress syndrome. Intensive Care Medicine, 2017, 43, 1123-1131.	3.9	25
263	Interleukin-1 Receptor Antagonist Is Associated With Pediatric Acute Respiratory Distress Syndrome and Worse Outcomes in Children With Acute Respiratory Failure*. Pediatric Critical Care Medicine, 2018, 19, 930-938.	0.2	25
264	TGF-Â and lung fluid balance in ARDS. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 885-886.	3.3	24
265	The TLR4-PAR1 Axis Regulates Bone Marrow Mesenchymal Stromal Cell Survival and Therapeutic Capacity in Experimental Bacterial Pneumonia. Stem Cells, 2018, 36, 796-806.	1.4	24
266	Influence of Clinical Factors and Exclusion Criteria on Mortality in ARDS Observational Studies and Randomized Controlled Trials. Respiratory Care, 2018, 63, 1060-1069.	0.8	24
267	Clinically relevant model of pneumococcal pneumonia, ARDS, and nonpulmonary organ dysfunction in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L717-L736.	1.3	24
268	Time to Recognition of Sepsis in the Emergency Department Using Electronic Health Record Data: A Comparative Analysis of Systemic Inflammatory Response Syndrome, Sequential Organ Failure Assessment, and Quick Sequential Organ Failure Assessment. Critical Care Medicine, 2020, 48, 200-209.	0.4	24
269	Acute respiratory distress syndrome is associated with impaired alveolar macrophage efferocytosis. European Respiratory Journal, 2021, 58, 2100829.	3.1	24
270	The ex vivo human lung: research value for translational science. JCI Insight, 2019, 4, .	2.3	24

#	Article	IF	Citations
271	The severity of shock is associated with impaired rates of net alveolar fluid clearance in clinical acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L550-L555.	1.3	23
272	Comparison of chest radiograph scoring to lung weight as a quantitative index of pulmonary edema in organ donors. Clinical Transplantation, 2012, 26, 665-671.	0.8	23
273	Bone Marrow-Derived Cells Participate in Stromal Remodeling of the Lung Following Acute Bacterial Pneumonia in Mice. Lung, 2008, 186, 179-190.	1.4	22
274	A simple classification model for hospital mortality in patients with acute lung injury managed with lung protective ventilation*. Critical Care Medicine, 2011, 39, 2645-2651.	0.4	22
275	Plasma sTNFR1 and IL8 for prognostic enrichment in sepsis trials: a prospective cohort study. Critical Care, 2019, 23, 400.	2.5	22
276	A neutrophil subset defined by intracellular olfactomedin 4 is associated with mortality in sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L892-L902.	1.3	21
277	Extracorporeal Membrane Oxygenation for Respiratory Failure Related to COVID-19: A Nationwide Cohort Study. Anesthesiology, 2022, 136, 732-748.	1.3	21
278	Clara Cell Protein CC16. Chest, 2009, 135, 1408-1410.	0.4	20
279	Intensive care unit scoring systems outperform emergency department scoring systems for mortality prediction in critically ill patients: a prospective cohort study. Journal of Intensive Care, 2014, 2, 40.	1.3	20
280	Saving Lives with High-Flow Nasal Oxygen. New England Journal of Medicine, 2015, 372, 2225-2226.	13.9	20
281	Key stakeholders' perceptions of the acceptability and usefulness of a tablet-based tool to improve communication and shared decision making in ICUs. Journal of Critical Care, 2016, 33, 19-25.	1.0	20
282	Cigarette smoke exposure worsens acute lung injury in antibiotic-treated bacterial pneumonia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L25-L40.	1.3	20
283	Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L908-L925.	1.3	20
284	Healthy <i>versus</i> inflamed lung environments differentially affect mesenchymal stromal cells. European Respiratory Journal, 2021, 58, 2004149.	3.1	20
285	Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2018, 379, 884-887.	13.9	19
286	Plasmin improves blood–gas barrier function in oedematous lungs by cleaving epithelial sodium channels. British Journal of Pharmacology, 2020, 177, 3091-3106.	2.7	19
287	Calcium flux and endothelial dysfunction during acute lung injury: a STIMulating target for therapy. Journal of Clinical Investigation, 2013, 123, 1015-1018.	3.9	19
288	Clinical acute lung injury and acute respiratory distress syndrome. Current Treatment Options in Cardiovascular Medicine, 2002, 4, 139-149.	0.4	18

#	Article	IF	CITATIONS
289	Update on Acute Lung Injury and Critical Care Medicine 2009. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1027-1032.	2.5	18
290	Alveolar fluid clearance is faster in women with acute lung injury compared to men. Journal of Critical Care, 2011, 26, 249-256.	1.0	18
291	Acute Lung Failure. Seminars in Respiratory and Critical Care Medicine, 2011, 32, 607-625.	0.8	18
292	Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction. Frontiers in Physiology, 2014, 5, 259.	1.3	18
293	Human pulmonary endothelial cell permeability after exposure to LPS-stimulated leukocyte supernatants derived from patients with early sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L638-L644.	1.3	18
294	Advances and challenges in translating stem cell therapies for clinical diseases. Translational Research, 2010, 156, 107-111.	2.2	17
295	Acute cor pulmonale and the acute respiratory distress syndrome. Intensive Care Medicine, 2016, 42, 934-936.	3.9	17
296	New Strategies for Effective Therapeutics in Critically III Patients. JAMA - Journal of the American Medical Association, 2016, 315, 747.	3.8	17
297	Extracellular Vesicle Transfer from Mesenchymal Stromal Cells Modulates Macrophage Function in Acute Lung Injury. Basic Science and Clinical Implications. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1234-1236.	2.5	17
298	Variability in Pediatric Ideal Body Weight Calculation: Implications for Lung-Protective Mechanical Ventilation Strategies in Pediatric Acute Respiratory Distress Syndrome*. Pediatric Critical Care Medicine, 2018, 19, e643-e652.	0.2	17
299	Clinical trial design during and beyond the pandemic: the I-SPY COVID trial. Nature Medicine, 2022, 28, 9-11.	15.2	17
300	Mesenchymal stem cells and the stem cell niche: a new chapter. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1147-L1149.	1.3	16
301	ENaCs as Both Effectors and Regulators of MiRNAs in Lung Epithelial Development and Regeneration. Cellular Physiology and Biochemistry, 2017, 44, 1120-1132.	1.1	16
302	Endothelial Damage During Septic Shock. Chest, 2017, 152, 1-3.	0.4	16
303	Therapeutic potential of mesenchymal stromal cells in the treatment of ARDS. Transfusion, 2019, 59, 869-875.	0.8	16
304	Clinician Recognition of the Acute Respiratory Distress Syndrome: Risk Factors for Under-Recognition and Trends Over Time*. Critical Care Medicine, 2020, 48, 830-837.	0.4	16
305	Impact of Low and High Tidal Volumes on the Rat Alveolar Epithelial Type II Cell Proteome. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1006-1013.	2.5	15
306	Higher mini-BAL total protein concentration in early ARDS predicts faster resolution of lung injury measured by more ventilator-free days. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L579-L585.	1.3	15

#	Article	IF	CITATIONS
307	Rectal and Bladder Temperatures vs Forehead Core Temperatures Measured With SpotOn Monitoring System. American Journal of Critical Care, 2018, 27, 43-50.	0.8	15
308	Mesenchymal stromal cells and macrophages in sepsis: new insights. European Respiratory Journal, 2018, 51, 1800510.	3.1	15
309	I-SPY COVID adaptive platform trial for COVID-19 acute respiratory failure: rationale, design and operations. BMJ Open, 2022, 12, e060664.	0.8	15
310	Vascular pedicle width in acute lung injury: correlation with intravascular pressures and ability to discriminate fluid status. Critical Care, 2011, 15, R86.	2.5	14
311	Mechanical ventilation in acute hypoxemic respiratory failure: A review of new strategies for the practicing hospitalist. Journal of Hospital Medicine, 2014, 9, 469-475.	0.7	14
312	Resolution of Alveolar Edema in Acute Respiratory Distress Syndrome. Physiology and Biology. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 124-125.	2.5	14
313	Treating ARDS: new hope for a tough problem. Lancet Respiratory Medicine, the, 2014, 2, 84-85.	5.2	13
314	The potential of lipid mediator networks as ocular surface therapeutics and biomarkers. Ocular Surface, 2021, 19, 104-114.	2,2	13
315	Fibrinolytic niche is required for alveolar type 2 cell-mediated alveologenesis via a uPA-A6-CD44+-ENaC signal cascade. Signal Transduction and Targeted Therapy, 2021, 6, 97.	7.1	13
316	From protective ventilation to super-protective ventilation for acute respiratory distress syndrome. Intensive Care Medicine, 2013, 39, 963-965.	3.9	12
317	Exosome-based Therapy for Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 10-12.	2.5	12
318	Proliferative regulation of alveolar epithelial type 2 progenitor cells by human <i>Scnn1d</i> gene. Theranostics, 2019, 9, 8155-8170.	4.6	12
319	Acute respiratory distress syndrome subphenotypes and therapy responsive traits among preclinical models: protocol for a systematic review and meta-analysis. Respiratory Research, 2020, 21, 81.	1.4	12
320	Inhibition of the lipoxin A4 and resolvin D1 receptor impairs host response to acute lung injury caused by pneumococcal pneumonia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1085-L1092.	1.3	12
321	Thrombomodulin is associated with increased mortality and organ failure in mechanically ventilated children with acute respiratory failure: biomarker analysis from a multicenter randomized controlled trial. Critical Care, 2021, 25, 271.	2.5	12
322	Acute Hypoxemic Respiratory Failure after Large-Volume Thoracentesis. Mechanisms of Pleural Fluid Formation and Reexpansion Pulmonary Edema. Annals of the American Thoracic Society, 2016, 13, 438-443.	1.5	11
323	Defining phenotypes and treatment effect heterogeneity to inform acute respiratory distress syndrome and sepsis trials: secondary analyses of three RCTs. Efficacy and Mechanism Evaluation, 2021, 8, 1-104.	0.9	11
324	CD14-positive extracellular vesicles in bronchoalveolar lavage fluid as a new biomarker of acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L617-L624.	1.3	11

#	Article	IF	CITATIONS
325	Priming With Endotoxin Increases Acute Lung Injury in Mice by Enhancing the Severity of Lung Endothelial Injury. Anatomical Record, 2011, 294, 165-172.	0.8	10
326	Improved survival after lung transplantation for adults requiring preoperative invasive mechanical ventilation: A national cohort study. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, 1385-1395.e6.	0.4	10
327	Plasma Metabolites in Early Sepsis Identify Distinct Clusters Defined by Plasma Lipids. , 2021, 3, e0478.		10
328	Beyond the Alveolar Epithelium: Plasma Soluble Receptor for Advanced Glycation End Products Is Associated With Oxygenation Impairment, Mortality, and Extrapulmonary Organ Failure in Children With Acute Respiratory Distress Syndrome. Critical Care Medicine, 2022, 50, 837-847.	0.4	10
329	HOâ€1 induction restores câ€AMPâ€dependent lung epithelial fluid transport following severe hemorrhage in rats. FASEB Journal, 2005, 19, 1-25.	0.2	9
330	The acute respiratory distress syndrome in 2013. Translational Respiratory Medicine, 2013, 1, 10.	3.8	9
331	Cell-based Therapy in Sepsis. A Step Closer. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 280-281.	2.5	9
332	Cathepsin L Helps to Defend Mice from Infection with Influenza A. PLoS ONE, 2016, 11, e0164501.	1.1	9
333	Cigarette Smoke Exposure and Acute Respiratory Distress Syndrome in Sepsis: Epidemiology, Clinical Features, and Biologic Markers. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 927-935.	2.5	9
334	Aerosolized Vitamin E Acetate Causes Oxidative Injury in Mice and in Alveolar Macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, , .	1.3	9
335	Importance of catecholamine signaling in the development of platelet exhaustion after traumatic injury. Journal of Thrombosis and Haemostasis, 2022, 20, 2109-2118.	1.9	9
336	New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 284-308.	1.4	9
337	Simulation of lung alveolar epithelial wound healing in vitro. Journal of the Royal Society Interface, 2010, 7, 1157-1170.	1.5	8
338	Prognostic value of pulmonary dead space in patients with the acute respiratory distress syndrome. Critical Care, 2011, 15, 185.	2.5	8
339	Higher plasma cystatin C is associated with mortality after acute respiratory distress syndrome: findings from a Fluid and Catheter Treatment Trial (FACTT) substudy. Critical Care, 2020, 24, 416.	2.5	8
340	The ex vivo perfused human lung is resistant to injury by high-dose <i>S. pneumoniae</i> bacteremia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L218-L227.	1.3	8
341	Is there a need for emerging drugs for the acute respiratory distress syndrome?. Expert Opinion on Emerging Drugs, 2014, 19, 323-328.	1.0	7
342	Endogenous and Exogenous Cell-Based Pathways for Recovery from Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2014, 35, 797-809.	0.8	7

#	Article	IF	Citations
343	Visualization of Fra-1/AP-1 activation during LPS-induced inflammatory lung injury using fluorescence optical imaging. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L414-L424.	1.3	7
344	Effects of bone marrow-derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF- $\langle i \rangle \hat{1} \pm \langle i \rangle$, IL- $1 < i \rangle \hat{1}^2 < i \rangle$, and IFN- $< i \rangle \hat{1}^3 < i \rangle$. Physiological Reports, 2018, 6, e13831.	0.7	7
345	Plasma total fibroblast growth factor 23 levels are associated with acute kidney injury and mortality in children with acute respiratory distress syndrome. PLoS ONE, 2019, 14, e0222065.	1.1	7
346	Using best subset regression to identify clinical characteristics and biomarkers associated with sepsis-associated acute kidney injury. American Journal of Physiology - Renal Physiology, 2020, 319, F979-F987.	1.3	7
347	Activation of the Heat Shock Response Attenuates the Interleukin 1β–Mediated Inhibition of the Amiloride-Sensitive Alveolar Epithelial Ion Transport. Shock, 2013, 39, 189-196.	1.0	7
348	The endogenous capacity to produce proinflammatory mediators by the ex vivo human perfused lung. Intensive Care Medicine Experimental, 2020, 8, 56.	0.9	7
349	Biology and pathology of fibroproliferation following the acute respiratory distress syndrome. Intensive Care Medicine, 2015, 41, 147-150.	3.9	6
350	Pulmonary microbiome and gene expression signatures differentiate lung function in pediatric hematopoietic cell transplant candidates. Science Translational Medicine, 2022, 14, eabm8646.	5.8	6
351	Challenges in predicting which patients will develop ARDS. Lancet Respiratory Medicine, the, 2016, 4, 847-848.	5.2	5
352	Clinical, Radiographic, Physiologic, and Biologic Measurements to Facilitate Personalized Medicine for ARDS. Chest, 2016, 150, 989-990.	0.4	5
353	Reply to "Letter to the Editor: Pulmonary toxicity of electronic cigarettes: more doubts than certainties― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L966-L967.	1.3	5
354	ECMO in severe acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2019, 7, 106-108.	5.2	5
355	Is a Part Better than the Whole for Cell-based Therapy for Acute Respiratory Distress Syndrome?. Anesthesiology, 2019, 130, 683-685.	1.3	5
356	Proinflammatory cytokines and ARDS pulmonary edema fluid induce CD40 on human mesenchymal stromal cellsâ€"A potential mechanism for immune modulation. PLoS ONE, 2020, 15, e0240319.	1.1	5
357	Association of patient weight status with plasma surfactant protein D, a biomarker of alveolar epithelial injury, in children with acute respiratory failure. Pediatric Pulmonology, 2020, 55, 2730-2736.	1.0	5
358	Readmission following both cardiac and nonâ€cardiac acute dyspnoea is associated with a striking risk of death. ESC Heart Failure, 2021, 8, 2473-2484.	1.4	5
359	Intravenous immunoglobulin therapy for COVID-19 ARDS. Lancet Respiratory Medicine, the, 2021, , .	5 . 2	5
360	Transfusion-Related Acute Lung Injury: 36 years of Progress (1985-2021). Annals of the American Thoracic Society, 2022, , .	1.5	5

#	Article	IF	Citations
361	Increased alveolar fluid clearance following thoracotomy: Report of a case and results of an analysis. Surgery Today, 1997, 27, 762-765.	0.7	4
362	Noninvasive ventilation for acute respiratory failure. , 2000, 16, 403-408.		4
363	Cell Therapy for Lung Disease. Chest, 2013, 143, 1525-1527.	0.4	4
364	Mesenchymal Stromal (Stem) Cell Therapy: An Emerging Immunomodulatory Strategy for the Adjunctive Treatment of Sepsis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 363-364.	2.5	4
365	Assessment of Alveolar Macrophage Dysfunction Using an in vitro Model of Acute Respiratory Distress Syndrome. Frontiers in Medicine, 2021, 8, 737859.	1.2	4
366	Right-Heart Catheterization is a Diagnostic Procedure not a Therapeutic Intervention. Journal of Intensive Care Medicine, 1991, 6, 101-104.	1.3	3
367	Mesenchymal stem (stromal) cells for treatment of acute respiratory distress syndrome – Authors' reply. Lancet Respiratory Medicine,the, 2015, 3, e12-e13.	5.2	3
368	Sedation Protocol for Critically Ill Pediatric Patientsâ€"Reply. JAMA - Journal of the American Medical Association, 2015, 313, 1754.	3.8	3
369	Elevated donor plasminogen activator inhibitor†levels and the risk of primary graft dysfunction. Clinical Transplantation, 2018, 32, e13210.	0.8	3
370	Effect of Rosuvastatin on Acute Kidney Injury in Sepsis-Associated Acute Respiratory Distress Syndrome. Canadian Journal of Kidney Health and Disease, 2018, 5, 205435811878915.	0.6	3
371	Impact of Bilateral Infiltrates on Inflammatory Biomarker Levels and Clinical Outcomes of Children With Oxygenation Defect. Critical Care Medicine, 2020, 48, e498-e504.	0.4	3
372	The ARREST Pneumonia Clinical Trial. Rationale and Design. Annals of the American Thoracic Society, 2021, 18, 698-708.	1.5	3
373	Vitamin D Status and Clinical Outcomes in Acute Respiratory Distress Syndrome: A Secondary Analysis From the Assessment of Low Tidal Volume and Elevated End-Expiratory Volume to Obviate Lung Injury (ALVEOLI) Trial. Journal of Intensive Care Medicine, 2022, 37, 793-802.	1.3	3
374	Therapeutic Effects of High Molecular Weight Hyaluronic Acid in Severe Pseudomonas Aeruginosa Pneumonia in Ex Vivo Perfused Human Lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L827-L836.	1.3	3
375	Single Nucleotide Variant in FAS Associates With Organ Failure and Soluble Fas Cell Surface Death Receptor in Critical Illness. Critical Care Medicine, 2022, 50, e284-e293.	0.4	3
376	Prevention of Ventilator-Associated Pneumonia. Annals of Internal Medicine, 2004, 140, 486.	2.0	2
377	Precision medicine for cell therapy in acute respiratory distress syndrome – Authors' reply. Lancet Respiratory Medicine,the, 2019, 7, e14.	5.2	2
378	Alternative Tobacco Product Use in Critically Ill Patients. International Journal of Environmental Research and Public Health, 2020, 17, 8707.	1.2	2

#	Article	IF	Citations
379	Environmental Factors. Critical Care Clinics, 2021, 37, 717-732.	1.0	2
380	Delayed angiopoietinâ€2 blockade reduces influenzaâ€induced lung injury and improves survival in mice. Physiological Reports, 2021, 9, e15081.	0.7	2
381	Delayed Presentation and Mortality in Children With Sepsis in a Public Tertiary Care Hospital in Tanzania. Frontiers in Pediatrics, 2021, 9, 764163.	0.9	2
382	Impact of e-cigarette aerosol on primary human alveolar epithelial type 2 cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L152-L164.	1.3	2
383	Upcoming and urgent challenges in critical care research based on COVID-19 pandemic experience. Anaesthesia, Critical Care & Pain Medicine, 2022, , 101121.	0.6	2
384	Alveolar Epithelium and Fluid Transport. , 2016, , 150-156.e2.		1
385	Measurement of Protein Permeability and Fluid Transport of Human Alveolar Epithelial Type II Cells Under Pathological Conditions. Methods in Molecular Biology, 2018, 1809, 121-128.	0.4	1
386	AlMing Immunomodulation Therapy at Sepsis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 253-254.	1.4	1
387	Could Decisions to Limit Treatment Contribute to Mortality Differences between Patients with Different Presepsis Trajectories?. Annals of the American Thoracic Society, 2019, 16, 522-522.	1.5	1
388	Progress and potential of mesenchymal stromal cell therapy in acute respiratory distress syndrome., 2021,, 353-372.		1
389	Transepithelial nasal potential difference in patients with, and at risk of acute respiratory distress syndrome. Thorax, 2021, 76, thoraxjnl-2020-215587.	2.7	1
390	Carbonic Anhydrase IX: Scaring Away the Grim Reaper in Acute Lung Injury?. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 573-575.	1.4	1
391	Functional Outcomes and Morbidity in Pediatric Sepsis Survivors: A Tanzanian Experience. Frontiers in Pediatrics, 2021, 9, 805518.	0.9	1
392	Mesenchymal Stromal Cell Extracellular Vesicles - A New Approach for Preventing Bronchopulmonary Dysplasia?. American Journal of Respiratory and Critical Care Medicine, 2022, , .	2.5	1
393	Outstanding scientists in the world of organ dysfunction. Journal of Organ Dysfunction, 2006, 2, 4-4.	0.3	0
394	What Are the Pathologic and Pathophysiologic Changes That Accompany Acute Lung Injury and ARDS?. , 2010, , 82-87.		0
395	Perspective on the Journal 2006–2011. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L829-L829.	1.3	0
396	Overnight Extubation in Patients With Mechanical Ventilation. JAMA Internal Medicine, 2016, 176, 1660.	2.6	0

#	Article	IF	CITATIONS
397	Potential Value of Biomarker Signatures in Sepsis and Acute Respiratory Distress Syndrome in Children and Adults*. Critical Care Medicine, 2020, 48, 428-430.	0.4	0
398	Preface. Critical Care Clinics, 2021, 37, xiii-xv.	1.0	0
399	Selective Decontamination of the Digestive Tract and Prevention of Ventilator-Associated Pneumonia. Annals of Internal Medicine, 2004, 141, 577.	2.0	0
400	Mesenchymal Stem Cells for Acute Lung Injury. , 2010, , 121-140.		0
401	Alveolar and Distal Airway Epithelial Fluid Transport. , 2010, , 217-225.		0
402	The Effect of Hemorrhagic Shock and Resuscitation on Bloodâ€Brain Barrier Integrity. FASEB Journal, 2012, 26, 707.7.	0.2	0
403	MSCs for Treatment of Acute Lung Injury. , 2013, , 561-570.		0
404	Cell Therapy with the Cell or Without the Cell for Premature Infants? Time Will Tell. American Journal of Respiratory and Critical Care Medicine, 2021, , .	2.5	0
405	A decoy mutant ACE2 designed to reduce COVID-19. Trends in Pharmacological Sciences, 2022, , .	4.0	0
406	Title is missing!. , 2020, 15, e0240319.		0
407	Title is missing!. , 2020, 15, e0240319.		0
408	Title is missing!. , 2020, 15, e0240319.		0
409	Title is missing!. , 2020, 15, e0240319.		0
410	Reply to: SARS-CoV2 Endotheliopathy: Insights from Single Cell RNAseq. American Journal of Respiratory and Critical Care Medicine, 0, , .	2.5	0