
Christopher E Bone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Landscapes shared by visibility: a case study on the settlement relationships of the Songgukri culture, Korea. Archaeological and Anthropological Sciences, 2020, 12, 1.	1.8	2
2	Improving Mountain Pine Beetle Survival Predictions Using Multi-Year Temperatures Across the Western USA. Forests, 2019, 10, 866.	2.1	1
3	An Initial Look at Contracted Wildfire Response Capacity in the American West. Journal of Forestry, 2019, 117, 1-8.	1.0	7
4	Documents as data: A content analysis and topic modeling approach for analyzing responses to ecological disturbances. Ecological Informatics, 2019, 51, 82-95.	5.2	18
5	Cyclic epidemics, population crashes, and irregular eruptions in simulated populations of the mountain pine beetle, Dendroctonus ponderosae. Ecological Complexity, 2018, 36, 218-229.	2.9	3
6	Sharing contracted resources for fire suppression: engine dispatch in the Northwestern United States. International Journal of Wildland Fire, 2017, 26, 113.	2.4	12
7	Simulating bark beetle population dynamics in response to windthrow events. Ecological Complexity, 2017, 32, 21-30.	2.9	18
8	Adaptation to a landscape-scale mountain pine beetle epidemic in the era of networked governance: the enduring importance of bureaucratic institutions. Ecology and Society, 2017, 22, .	2.3	35
9	A network modeling approach to policy implementation in natural resource management agencies. Computers, Environment and Urban Systems, 2016, 57, 155-177.	7.1	5
10	Identifying spatial data availability and spatial data needs for Chagas disease mitigation in South America. Spatial and Spatio-temporal Epidemiology, 2016, 17, 45-58.	1.7	1
11	A complex adaptive systems perspective of forest policy in China. Technological Forecasting and Social Change, 2016, 112, 138-144.	11.6	7
12	Assessing spatiotemporal relationships between wildfire and mountain pine beetle disturbances across multiple time lags. Ecosphere, 2016, 7, e01482.	2.2	5
13	A geospatial search engine for discovering multi-format geospatial data across the web. International Journal of Digital Earth, 2016, 9, 47-62.	3.9	26
14	Employing resilience in the United States Forest Service. Land Use Policy, 2016, 52, 430-438.	5.6	31
15	Effectiveness of dynamic quarantines against pathogen spread in models of the horticultural trade network. Ecological Complexity, 2015, 24, 14-28.	2.9	10
16	A Temporal Variantâ€Invariant Validation Approach for Agentâ€based Models of Landscape Dynamics. Transactions in GIS, 2014, 18, 161-182.	2.3	10
17	Modeling micro-scale ecological processes and emergent patterns of mountain pine beetle epidemics. Ecological Modelling, 2014, 289, 45-58.	2.5	15
18	A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran's I statistic. Applied Geography, 2013, 40, 161-170.	3.7	55

Christopher E Bone

#	Article	IF	CITATIONS
19	Impact of Forest Fragmentation on Patterns of Mountain Pine Beetle-Caused Tree Mortality. Forests, 2013, 4, 279-295.	2.1	21
20	Applying content analysis for investigating the reporting of water issues. Computers, Environment and Urban Systems, 2012, 36, 599-613.	7.1	17
21	Assessing the Impacts of Local Knowledge and Technology on Climate Change Vulnerability in Remote Communities. International Journal of Environmental Research and Public Health, 2011, 8, 733-761.	2.6	31
22	Alaska's Freshwater Resources: Issues Affecting Local and International Interests1. Journal of the American Water Resources Association, 2011, 47, 143-157.	2.4	9
23	Modeling-in-the-middle: bridging the gap between agent-based modeling and multi-objective decision-making for land use change. International Journal of Geographical Information Science, 2011, 25, 717-737.	4.8	34
24	Simulation and validation of a reinforcement learning agent-based model for multi-stakeholder forest management. Computers, Environment and Urban Systems, 2010, 34, 162-174.	7.1	38
25	Monitoring Land Use: Capturing Change through an Information Fusion Approach. Sustainability, 2010, 2, 1182-1203.	3.2	13
26	Influence of statistical methods and reference dates on describing temperature change in Alaska. Journal of Geophysical Research, 2010, 115, .	3.3	7
27	Incorporating spatio-temporal knowledge in an Intelligent Agent Model for natural resource management. Landscape and Urban Planning, 2010, 96, 123-133.	7.5	11
28	Defining Transition Rules with Reinforcement Learning for Modeling Land Cover Change. Simulation, 2009, 85, 291-305.	1.8	4
29	Evaluating Spatio-temporal Complexities of Forest Management: An Integrated Agent-based Modeling and GIS Approach. Environmental Modeling and Assessment, 2009, 14, 481-496.	2.2	14
30	GIS and Intelligent Agents for Multiobjective Natural Resource Allocation: A Reinforcement Learning Approach. Transactions in GIS, 2009, 13, 253-272.	2.3	17
31	Evaluating forest management practices using a GIS-based cellular automata modeling approach with multispectral imagery. Environmental Modeling and Assessment, 2007, 12, 105-118.	2.2	16
32	A fuzzy-constrained cellular automata model of forest insect infestations. Ecological Modelling, 2006, 192, 107-125.	2.5	72
33	Integrating high resolution remote sensing, GIS and fuzzy set theory for identifying susceptibility areas of forest insect infestations. International Journal of Remote Sensing, 2005, 26, 4809-4828.	2.9	45