
M Nasir Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8635854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere, 2022, 291, 132672.	8.2	36
2	Nitric oxide and hydrogen sulfide interactions in plants under adverse environmental conditions. , 2022, , 215-244.		1
3	Hot and dry: how plants can thrive in future climates. Plant Cell Reports, 2022, 41, 497-499.	5.6	6
4	Infield magnetic measurements of (Cu _{0.5} Tl _{0.5})Ba ₂ Ca ₃ (Cu _{4â^'<i>x</i>} Ti _{x< (<i>x</i> = 0, 0.25, 0.50, 0.75) samples. Low Temperature Physics, 2022, 48, 193-199.}	/subbus)O <s< td=""><td>subo 12â^'l´</td></s<>	subo 12â^'l´
5	Hydrogen sulphide (H ₂ S) in the hidden half: Role in root growth, stress signalling and rhizospheric interactions. Plant Biology, 2022, 24, 559-568.	3.8	13
6	Effect of Nitric Oxide on Seed Germination and Seedling Development of Tomato Under Chromium Toxicity. Journal of Plant Growth Regulation, 2021, 40, 2358-2370.	5.1	39
7	Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots. Plant Physiology and Biochemistry, 2021, 159, 211-225.	5.8	52
8	Hydrogen Sulfide on the Crossroad of Regulation, Protection, Interaction and Signaling in Plant Systems Under Different Environmental Conditions. Plant in Challenging Environments, 2021, , 1-12.	0.4	0
9	Cysteine and Hydrogen Sulfide: A Complementary Association for Plant Acclimation to Abiotic Stress. Plant in Challenging Environments, 2021, , 187-214.	0.4	3
10	Plant hydrogen sulfide under physiological and adverse environments. Plant Physiology and Biochemistry, 2021, 161, 46-47.	5.8	3
11	Exogenous Potassium (K+) Positively Regulates Na+/H+ Antiport System, Carbohydrate Metabolism, and Ascorbate–Glutathione Cycle in H2S-Dependent Manner in NaCl-Stressed Tomato Seedling Roots. Plants, 2021, 10, 948.	3.5	20
12	Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Reports, 2021, 40, 1543-1564.	5.6	39
13	Exogenous melatoninâ€mediated regulation of K ⁺ /Na ⁺ transport, H ⁺ â€ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaClâ€stressed tomato seedling roots. Plant Biology, 2021, 23, 797-805.	3.8	35
14	Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide - Biology and Chemistry, 2020, 94, 95-107.	2.7	60
15	Nitric oxide is involved in nano-titanium dioxide-induced activation of antioxidant defense system and accumulation of osmolytes under water-deficit stress in Vicia faba L Ecotoxicology and Environmental Safety, 2020, 190, 110152.	6.0	69
16	Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiology and Biochemistry, 2020, 156, 278-290.	5.8	84
17	Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. Journal of Hazardous Materials, 2020, 398, 122882.	12.4	213
18	Exogenous melatonin mitigates boron toxicity in wheat. Ecotoxicology and Environmental Safety, 2020, 201, 110822.	6.0	43

M NASIR KHAN

#	Article	IF	CITATIONS
19	Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia faba L Environmental and Experimental Botany, 2019, 161, 290-302.	4.2	57
20	Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings. International Journal of Molecular Sciences, 2019, 20, 353.	4.1	145
21	Hydrogen Sulfide-Mediated Activation of O-Acetylserine (Thiol) Lyase and I/d-Cysteine Desulfhydrase Enhance Dehydration Tolerance in Eruca sativa Mill. International Journal of Molecular Sciences, 2018, 19, 3981.	4.1	52
22	OBSOLETE: Fertilizers and Their Contaminants in Soils, Surface and Groundwater. , 2018, , .		14
23	Ascorbic acid improves the tolerance of wheat plants to lead toxicity. Journal of Plant Interactions, 2018, 13, 409-419.	2.1	80
24	Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry, 2017, 110, 194-209.	5.8	328
25	Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide - Biology and Chemistry, 2017, 68, 91-102.	2.7	157
26	Sodium nitroprusside and indole acetic acid improve the tolerance of tomato plants to heat stress by protecting against DNA damage. Journal of Plant Interactions, 2017, 12, 177-186.	2.1	46
27	Impact of varying elevations on growth and activities of antioxidant enzymes of some medicinal plants of Saudi Arabia. Acta Ecologica Sinica, 2016, 36, 141-148.	1.9	11
28	Nitric Oxide Impact on Plant Adaptation to Transition Metal Stress. , 2015, , 155-167.		2
29	Nano-titanium Dioxide (Nano-TiO2) Mitigates NaCl Stress by Enhancing Antioxidative Enzymes and Accumulation of Compatible Solutes in Tomato (Lycopersicon esculentum Mill.). Journal of Plant Sciences, 2015, 11, 1-11.	0.2	21
30	Tolerance of Plants to Abiotic Stress: A Role of Nitric Oxide and Calcium. , 2014, , 225-242.		19
31	Eutrophication: Challenges and Solutions. , 2014, , 1-15.		63
32	Adverse Effects of Abiotic Stresses on Medicinal and Aromatic Plants and Their Alleviation by Calcium. , 2013, , 101-146.		8
33	Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide - Biology and Chemistry, 2012, 27, 210-218.	2.7	177
34	Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma, 2012, 249, 709-720.	2.1	48
35	Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiologiae Plantarum, 2010, 32, 121-132.	2.1	194
36	Nitrogen in Relation to Photosynthetic Capacity and Accumulation of Osmoprotectant and Nutrients in Brassica Genotypes Grown Under Salt Stress. Agricultural Sciences in China, 2010, 9, 671-680.	0.6	49

M NASIR KHAN

#	Article	IF	CITATIONS
37	Promotive effects of phosphorus on crop productivity, enzyme activities, anthraquinone and sennoside content in <i>Cassia tora</i> L. – a medicinal herb. Journal of Plant Interactions, 2009, 4, 49-57.	2.1	8
38	Morphological and physio-biochemical characterization ofBrassica junceaL. Czern. & Coss. genotypes under salt stress. Journal of Plant Interactions, 2009, 4, 67-80.	2.1	61
39	Role of Nitrogen and Gibberellin (GA ₃) in the Regulation of Enzyme Activities and in Osmoprotectant Accumulation in <i>Brassica juncea</i> L. under Salt Stress. Journal of Agronomy and Crop Science, 2008, 194, 214-224.	3.5	108
40	Cumulative Effect of Soil and Foliar Application of Nitrogen, Phosphorus, and Sulfur on Growth, Physico-Biochemical Parameters, Yield Attributes, and Fatty Acid Composition in Oil of Erucic Acid-Free Rapeseed-Mustard Genotypes. Journal of Plant Nutrition, 2008, 31, 1284-1298.	1.9	19