Radu Silaghi-Dumitrescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8635733/publications.pdf

Version: 2024-02-01

174 papers 3,347 citations

30 h-index 50 g-index

191 all docs

191 docs citations

191 times ranked

4129 citing authors

#	Article	IF	CITATIONS
1	Evaluation of Antioxidant and Antimicrobial Activities and Phenolic Profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules, 2014, 19, 5490-5507.	3.8	151
2	Polyphenolic Content, Antioxidant and Antimicrobial Activities of Lycium barbarum L. and Lycium chinense Mill. Leaves. Molecules, 2014, 19, 10056-10073.	3.8	134
3	X-ray Crystal Structures ofMoorella thermoaceticaFprA. Novel Diiron Site Structure and Mechanistic Insights into a Scavenging Nitric Oxide Reductaseâ€,‡. Biochemistry, 2005, 44, 6492-6501.	2.5	131
4	A Flavodiiron Protein and High Molecular Weight Rubredoxin fromMoorella thermoaceticawith Nitric Oxide Reductase Activityâ€. Biochemistry, 2003, 42, 2806-2815.	2.5	121
5	Tyrosine Residues as Redox Cofactors in Human Hemoglobin. Journal of Biological Chemistry, 2008, 283, 30780-30787.	3.4	109
6	Cytochrome bd Oxidase, Oxidative Stress, and Dioxygen Tolerance of the Strictly Anaerobic Bacterium Moorella thermoacetica. Journal of Bacteriology, 2005, 187, 2020-2029.	2.2	96
7	Ascorbate removes key precursors to oxidative damage by cell-free haemoglobin in vitro and in vivo. Biochemical Journal, 2006, 399, 513-524.	3.7	92
8	Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV–vis spectroscopic data. Journal of Food Composition and Analysis, 2011, 24, 516-522.	3.9	92
9	Redox chemistry of cobalamin and its derivatives. Coordination Chemistry Reviews, 2016, 309, 68-83.	18.8	84
10	Origanum vulgare ssp. vulgare: Chemical Composition and Biological Studies. Molecules, 2018, 23, 2077.	3.8	76
11	A Flavo-Diiron Protein fromDesulfovibrio vulgariswith Oxidase and Nitric Oxide Reductase Activities. Evidence for an in Vivo Nitric Oxide Scavenging Functionâ€. Biochemistry, 2005, 44, 3572-3579.	2.5	71
12	Ferryl haem protonation gates peroxidatic reactivity in globins. Biochemical Journal, 2007, 403, 391-395.	3.7	71
13	Laccases: Complex architectures for one-electron oxidations. Biochemistry (Moscow), 2012, 77, 1395-1407.	1.5	71
14	Linkage Isomerism in Nitrite Reduction by Cytochrome cd1 Nitrite Reductase. Inorganic Chemistry, 2004, 43, 3715-3718.	4.0	66
15	Peroxidase activity of hemoglobin towards ascorbate and urate: A synergistic protective strategy against toxicity of Hemoglobin-Based Oxygen Carriers (HBOC). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1415-1420.	2.3	62
16	Anticancer and Antimicrobial Activities of Some Antioxidant-Rich Cameroonian Medicinal Plants. PLoS ONE, 2013, 8, e55880.	2.5	58
17	Antimicrobial and Antioxidant Activities and Phenolic Profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & E.A.S. Johnson Leaves. Molecules, 2015, 20, 4720-4734.	3.8	57
18	Computational Study of the Non-Heme Iron Active Site in Superoxide Reductase and Its Reaction with Superoxide. Inorganic Chemistry, 2003, 42, 446-456.	4.0	56

#	Article	lF	Citations
19	Structural Basis for O2 Sensing by the Hemerythrin-like Domain of a Bacterial Chemotaxis Protein: Substrate Tunnel and Fluxional N Terminus,. Biochemistry, 2006, 45, 9023-9031.	2.5	55
20	Polyphenolic Composition, Antioxidant and Antibacterial Activities for Two Romanian Subspecies of Achillea distans Waldst. et Kit. ex Willd Molecules, 2013, 18, 8725-8739.	3.8	53
21	Recent Developments in the Chemistry of Thiourea Oxides. Chemistry - A European Journal, 2014, 20, 14164-14176.	3.3	44
22	The nature of the high-valent complexes in the catalytic cycles of hemoproteins. Journal of Biological Inorganic Chemistry, 2004, 9, 471-476.	2.6	43
23	Cobalamin reduction by dithionite. Evidence for the formation of a six-coordinate cobalamin(ii) complex. Dalton Transactions, 2011, 40, 9831.	3.3	43
24	A "yellow―laccase with "blue―spectroscopic features, from Sclerotinia sclerotiorum. Process Biochemistry, 2012, 47, 968-975.	3.7	43
25	Nitric Oxide Reduction by Heme-Thiolate Enzymes (P450nor): A Reevaluation of the Mechanism. European Journal of Inorganic Chemistry, 2003, 2003, 1048-1052.	2.0	36
26	Redox reactivity in propolis: direct detection of free radicals in basic medium and interaction with hemoglobin. Redox Report, 2009, 14, 267-274.	4.5	34
27	Computational study of protein secondary structure elements: Ramachandran plots revisited. Journal of Molecular Graphics and Modelling, 2014, 50, 125-133.	2.4	33
28	High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins. Journal of Biological Inorganic Chemistry, 2005, 10, 407-416.	2.6	32
29	Interactions Between Proteins and Platinum-Containing Anti-Cancer Drugs. Mini-Reviews in Medicinal Chemistry, 2011, 11, 214-224.	2.4	32
30	DFT and the electromerism in complexes of iron with diatomic ligands. Journal of Inorganic Biochemistry, 2006, 100, 161-166.	3.5	31
31	Redox non-innocence of a nitrido bridge in a methane-activating dimer of iron phthalocyanine. New Journal of Chemistry, 2011, 35, 1140.	2.8	31
32	Sodium dithionite and its relatives: past and present. Journal of Sulfur Chemistry, 2013, 34, 444-449.	2.0	31
33	Oxidative Protection of Hemoglobin and Hemerythrin by Cross-Linking with a Nonheme Iron Peroxidase: Potentially Improved Oxygen Carriers for Use in Blood Substitutes. Biomacromolecules, 2014, 15, 1920-1927.	5.4	31
34	Reaction of Aplysia limacina metmyoglobin with hydrogen peroxide. Dalton Transactions, 2007, , 840.	3.3	30
35	Comparative study of reaction of cobalamin and cobinamide with thiocyanate. Journal of Inorganic Biochemistry, 2013, 125, 32-39.	3.5	30
36	Transient species involved in catalytic dioxygen/peroxide activation by hemoproteins: possible involvement of protonated Compound I species. Dalton Transactions, 2005, , 3477.	3.3	29

#	Article	IF	CITATIONS
37	Achillea schurii Flowers: Chemical, Antioxidant, and Antimicrobial Investigations. Molecules, 2016, 21, 1050.	3.8	28
38	Copper-containing nitrite reductase: A DFT study of nitrite and nitric oxide adducts. Journal of Inorganic Biochemistry, 2006, 100, 396-402.	3.5	26
39	Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 2297-303.	0.2	25
40	A Design of Experiments Strategy to Enhance the Recovery of Polyphenolic Compounds from Vitis vinifera By-Products through Heat Reflux Extraction. Biomolecules, 2019, 9, 529.	4.0	24
41	Nitrite binding to globins: linkage isomerism, EPR silence and reductive chemistry. Nitric Oxide - Biology and Chemistry, 2014, 42, 32-39.	2.7	23
42	Laccase is upregulated via stress pathways in the phytopathogenic fungus Sclerotinia sclerotiorum. Fungal Biology, 2013, 117, 528-539.	2.5	22
43	Towards the Development of Hemerythrin-Based Blood Substitutes. Protein Journal, 2010, 29, 387-393.	1.6	20
44	Sources for developing new medicinal products: biochemical investigations on alcoholic extracts obtained from aerial parts of some Romanian Amaryllidaceae species. BMC Complementary and Alternative Medicine, 2018, 18, 226.	3.7	20
45	The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation. Molecules, 2018, 23, 350.	3.8	20
46	Antioxidant Activity Evaluation Involving Hemoglobin-Related Free Radical Reactivity. Methods in Molecular Biology, 2015, 1208, 247-255.	0.9	20
47	An assay for pro-oxidant reactivity based on phenoxyl radicals generated by laccase. Food Chemistry, 2014, 143, 214-222.	8.2	19
48	"Yellow―laccase from Sclerotinia sclerotiorum is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct. PLoS ONE, 2020, 15, e0225530.	2.5	19
49	Towards hemerythrin-based blood substitutes: Comparative performance to hemoglobin on human leukocytes and umbilical vein endothelial cells. Journal of Biosciences, 2011, 36, 215-221.	1.1	18
50	Microwave assisted synthesis, photophysical and redox properties of (phenothiazinyl)vinyl-pyridinium dyes. Dyes and Pigments, 2014, 102, 315-325.	3.7	18
51	Contrast between Water―and Ethanolâ€Based Antioxidant Assays: Aspen (<scp><i>P</i></scp> <i>opulus) Tj E</i>	TQq1 1 0 2.6	0.784314 rg8T 18
52	Reversible naftifine-induced carotenoid depigmentation in Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison causing onychomycosis. Scientific Reports, 2017, 7, 11125.	3.3	18
53	Bioactive compounds and "in vitro―antioxidant activity of some traditional and non-traditional cold-pressed edible oils from Macedonia. Journal of Food Science and Technology, 2018, 55, 1614-1623.	2.8	18
54	A density functional study of heme–peroxynitrite adducts. Computational and Theoretical Chemistry, 2005, 722, 233-237.	1.5	17

#	Article	IF	Citations
55	Spin state preference and bond formation/cleavage barriers in ferrous-dioxygen heme adducts: remarkable dependence on methodology. RSC Advances, 2013, 3, 26194.	3.6	17
56	Study of the Relationships between the Structure, Lipophilicity and Biological Activity of Some Thiazolyl-carbonyl-thiosemicarbazides and Thiazolyl-azoles. Molecules, 2015, 20, 22188-22201.	3.8	17
57	Halide Activation by Heme Peroxidases: Theoretical Predictions on Putative Adducts of Halides with Compound I. European Journal of Inorganic Chemistry, 2008, 2008, 5404-5407.	2.0	15
58	Computational investigations on the electronic structure and reactivity of thiourea dioxide: sulfoxylate formation, tautomerism and dioxygen liberation. Journal of Sulfur Chemistry, 2010, 31, 27-39.	2.0	15
59	Ascorbate peroxidase activity of cytochrome <i>c</i> . Free Radical Research, 2011, 45, 439-444.	3.3	15
60	Antioxidant activity evaluation by physiologically relevant assays based on haemoglobin peroxidase activity and cytochrome $\langle i \rangle c \langle i \rangle$ -induced oxidation of liposomes. Natural Product Research, 2016, 30, 1315-1319.	1.8	15
61	CA3 hippocampal field: Cellular changes and its relation with blood nitro-oxidative stress reveal a balancing function of CA3 area in rats exposed to repetead restraint stress. Brain Research Bulletin, 2017, 130, 10-17.	3.0	15
62	Redox Activation of Small Molecules at Biological Metal Centers. Structure and Bonding, 2013, , 97-117.	1.0	14
63	Hemoglobin–albumin cross-linking with disuccinimidyl suberate (DSS) and/or glutaraldehyde for blood substitutes. Artificial Cells, Nanomedicine and Biotechnology, 2014, 42, 13-17.	2.8	14
64	Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity. PLoS ONE, 2016, 11, e0153909.	2.5	14
65	Chemo-mapping and biochemical-modulatory and antioxidant/prooxidant effect of Galium verum extract during acute restraint and dark stress in female rats. PLoS ONE, 2018, 13, e0200022.	2.5	14
66	The high affinity of small-molecule antioxidants for hemoglobin. Free Radical Biology and Medicine, 2018, 124, 260-274.	2.9	14
67	Why does sulfite reductase employ siroheme?. Chemical Communications, 2019, 55, 14047-14049.	4.1	14
68	Derivatization of haemoglobin with periodate-generated reticulation agents: evaluation of oxidative reactivity for potential blood substitutes. Journal of Biochemistry, 2011, 149, 75-82.	1.7	13
69	Conformational Preferences of Gas-Phase Helices: Experiment and Theory Struggle to Agree: The Seven-Residue Peptide Ac-Phe-(Ala)5-Lys-H+. Chemistry - A European Journal, 2012, 18, 12941-12944.	3.3	13
70	Adduct of Aquacobalamin with Hydrogen Peroxide. Inorganic Chemistry, 2021, 60, 12681-12684.	4.0	13
71	A New Polyethyleneglycol-Derivatized Hemoglobin Derivative with Decreased Oxygen Affinity and Limited Toxicity. Protein Journal, 2011, 30, 27-31.	1.6	12
72	Sirohemeâ€containing sulfite reductase: A density functional investigation of the mechanism. International Journal of Quantum Chemistry, 2012, 112, 900-908.	2.0	12

#	Article	IF	CITATIONS
73	Fe(III) – Sulfide interaction in globins: Characterization and quest for a putative Fe(IV)-sulfide species. Journal of Inorganic Biochemistry, 2018, 179, 32-39.	3. 5	12
74	Hemoglobin-albumin Crosslinked Copolymers: Reduced Prooxidant Reactivity. Artificial Cells, Blood Substitutes, and Biotechnology, 2011, 39, 293-297.	0.9	11
7 5	Electromerism and linkage isomerism in biologically-relevant FeSO complexes. Journal of Inorganic Biochemistry, 2013, 118, 13-20.	3. 5	11
76	Functional models of nonheme diiron enzymes: kinetic and computational evidence for the formation of oxoiron(<scp>iv</scp>) species from peroxo-diiron(<scp>iii</scp>) complexes, and their reactivity towards phenols and H ₂ O ₂ . Dalton Transactions, 2016, 45, 14709-14718.	3.3	11
77	Stability of Glutaraldehyde in Biocide Compositions. International Journal of Molecular Sciences, 2020, 21, 3372.	4.1	11
78	A new route to carbon monoxide adducts of heme proteins. Journal of Porphyrins and Phthalocyanines, 2008, 12, 1096-1099.	0.8	10
79	First Water-Soluble μ-Nitrido Dimer of Iron Phthalocyanine. Macroheterocycles, 2012, 5, 175-177.	0.5	10
80	7-Methylguanine: protonation, formation of linkage isomers with trans-(NH3)2PtII, and base pairing properties. Dalton Transactions, 2012, 41, 6094.	3.3	10
81	Involvement of ferryl in the reaction between nitrite and the oxy forms of globins. Journal of Biological Inorganic Chemistry, 2014, 19, 1233-1239.	2.6	10
82	On the roles of the alanine and serine in the \hat{l}^2 -sheet structure of fibroin. Biophysical Chemistry, 2015, 197, 10-17.	2.8	10
83	Remarkable rutin-rich Hypericum capitatum extract exhibits anti-inflammatory effects on turpentine oil-induced inflammation in rats. BMC Complementary and Alternative Medicine, 2019, 19, 289.	3.7	10
84	Fe–O versus O–O bond cleavage in reactive iron peroxide intermediates of superoxide reductase. Journal of Biological Inorganic Chemistry, 2013, 18, 95-101.	2.6	9
85	O–S Bond Activation in Structures Isoelectronic with Ferric Peroxide Species Known in O–Oâ€Activating Enzymes: Relevance for Sulfide Activation and Sulfite Reductases. European Journal of Inorganic Chemistry, 2014, 2014, 5827-5837.	2.0	9
86	Computational Investigation of the Initial Two-Electron, Two-Proton Steps in the Reaction Mechanism of Hydroxylamine Oxidoreductase. Journal of Physical Chemistry B, 2014, 118, 12140-12145.	2.6	9
87	Redox control and autoxidation of class 1 , 2 and 3 phytoglobins from Arabidopsis thaliana. Scientific Reports, 2018 , 8 , 13714 .	3.3	9
88	Catalytic and stoichiometric flavanone oxidation mediated by nonheme oxoiron(<scp>iv</scp>) complexes as flavone synthase mimics: kinetic, mechanistic and computational studies. Dalton Transactions, 2018, 47, 14416-14420.	3.3	9
89	â€~Super-reduced' iron under physiologically-relevant conditions. Dalton Transactions, 2010, 39, 1464-1466.	3.3	8
90	Nitrite and nitrate reduction by molybdenum centers of the nitrate reductase type: Computational predictions on the catalytic mechanism. Nitric Oxide - Biology and Chemistry, 2012, 26, 27-31.	2.7	8

#	Article	IF	CITATIONS
91	Microwaveâ€Assisted Catalytic Amination of Phenothiazine; Reliable Access to Phenothiazine Analogues of Tröger's Base. European Journal of Organic Chemistry, 2013, 2013, 5500-5508.	2.4	8
92	Performance comparison of computational methods for modeling alpha-helical structures. Journal of Molecular Modeling, 2013, 19, 193-203.	1.8	8
93	In vivo evaluation of hemerythrin-based oxygen carriers: Similarities with hemoglobin-based counterparts. International Journal of Biological Macromolecules, 2018, 107, 1422-1427.	7.5	8
94	EVALUATION OF POLYPHENOLIC PROFILE AND ANTIOXIDANT ACTIVITY FOR SOME SALVIA SPECIES. Farmacia, 2019, 67, 801-805.	0.4	8
95	Heme ferrous–hydroperoxo complexes: some theoretical considerations. Archives of Biochemistry and Biophysics, 2004, 424, 137-140.	3.0	7
96	Protein-Based Blood Substitutes: Recent Attempts at Controlling Pro-Oxidant Reactivity with and Beyond Hemoglobin. Pharmaceuticals, 2013, 6, 867-880.	3.8	7
97	Bacterial nitric oxide reductase: a mechanism revisited by an ONIOM (DFT:MM) study. Journal of Molecular Modeling, 2015, 21, 130.	1.8	7
98	Multiconfigurational and DFT analyses of the electromeric formulation and UV–vis absorption spectra of the superoxide adduct of ferrous superoxide reductase. Journal of Inorganic Biochemistry, 2016, 165, 49-53.	3.5	7
99	Copolymerization of recombinant <i>Phascolopsisgouldii</i> hemerythrin with human serum albumin for use in blood substitutes. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 218-223.	2.8	7
100	Heme FeSO ^{2â^'} intermediates in sulfite reduction: Contrasts with FeOO ^{2â^'} species from oxygenâ€"oxygen bond activating systems. International Journal of Quantum Chemistry, 2018, 118, e25697.	2.0	7
101	A computational analysis of electromerism in hemoprotein Fe(I) models. Journal of Biological Inorganic Chemistry, 2010, 15, 977-986.	2.6	6
102	High-valent metalloporphyrins in hydrocarbon activation: metal(ν)-oxo or metal(ν)-hydroxo?. New Journal of Chemistry, 2010, 34, 1830.	2.8	6
103	Axial ligation in water-soluble copper porphyrinates: contrasts between EPR and UV–vis. Inorganic Chemistry Communication, 2012, 18, 1-3.	3.9	6
104	Asymmetry within the Fe(NO)2 moiety of dithiolate dinitrosyl iron complexes. Inorganica Chimica Acta, 2014, 418, 42-50.	2.4	6
105	An unexpected \hat{l} / $\!\!\!$ 44-oxido-bridged tetranuclear Cu(II) inverse coordination complex of a heptadentate bis(pyrazolyl)methane-based ligand: Synthesis, structure, spectroscopic properties, and catecholase activity. Inorganica Chimica Acta, 2019, 485, 190-199.	2.4	6
106	Glutaraldehyde-Polymerized Hemoglobin: In Search of Improved Performance as Oxygen Carrier in Hemorrhage Models. Bioinorganic Chemistry and Applications, 2020, 2020, 1-11.	4.1	6
107	Supramolecular architecture of [AsPh2Br2]2[(Br3)â^…(Br2)…(Br3)â^³] obtained by bromination of (AsPh2)2S. Inorganica Chimica Acta, 2018, 475, 120-126.	2.4	6
108	Superoxide interaction with nickel and iron superoxide dismutases. Journal of Molecular Graphics and Modelling, 2009, 28, 156-161.	2.4	5

#	Article	IF	Citations
109	Weak sulfur-sulfur interactions between chemically-identical atoms. Open Chemistry, 2013, 11, 457-463.	1.9	5
110	Redox and linkage isomerism with ligands relevant to oxidative and nitrosative stress in cobalamin. Polyhedron, 2014, 78, 72-84.	2.2	5
111	Evaluation of the Biochemical Effects of Silyl-Phosphaalkenes on Oxidative and Nitrosative Stress Pathways Involving Metallocenters. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 292-299.	1.6	5
112	Effect of bioactive compounds on antiradical and antimicrobial activity of extracts and cold-pressed edible oils from nutty fruits from Macedonia. Journal of Food Measurement and Characterization, 2018, 12, 2545-2552.	3.2	5
113	EPR detection of sulfanyl radical during sulfhemoglobin formation – Influence of catalase. Free Radical Biology and Medicine, 2019, 137, 110-115.	2.9	5
114	Preparation and In Vitro Characterization of Gels Based on Bromelain, Whey and Quince Extract. Gels, 2021, 7, 191.	4.5	5
115	A density functional investigation of hydrogen peroxide activation by high-valent heme centers: implications for the catalase catalytic cycle. Journal of Porphyrins and Phthalocyanines, 2010, 14, 371-374.	0.8	4
116	A theoretical study on the reaction pathways of peroxynitrite formation and decay at nonheme iron centers. International Journal of Quantum Chemistry, 2014, 114, 652-665.	2.0	4
117	Super-Reduced Mechanism of Nitric Oxide Reduction in Flavo-Diiron NO Reductases. European Journal of Inorganic Chemistry, 2014, 2014, 6061-6065.	2.0	4
118	The reaction of oxyhemoglobin with nitric oxide: EPR evidence for an iron(III)-nitrate intermediate. Inorganica Chimica Acta, 2015, 436, 179-183.	2.4	4
119	Comparative studies of reaction of cobalamin (II) and cobinamide (II) with sulfur dioxide. Journal of Biological Inorganic Chemistry, 2017, 22, 969-975.	2.6	4
120	The exocyclic amino group of adenine in PtII and PdII complexes: a critical comparison of the X-ray crystallographic structural data and gas phase calculations. Journal of Biological Inorganic Chemistry, 2017, 22, 567-579.	2.6	4
121	Affinity and Effect of Anticancer Drugs on the Redox Reactivity of Hemoglobin. Chemical Research in Toxicology, 2019, 32, 1402-1411.	3.3	4
122	Reversible complexation of ammonia by breaking a manganese–manganese bond in a manganese carbonyl ethylenedithiolate complex: a theoretical study of an unusual type of Lewis acid. Dalton Transactions, 2019, 48, 324-332.	3.3	4
123	Importance of the iron–sulfur component and of the siroheme modification in the resting state of sulfite reductase. Journal of Inorganic Biochemistry, 2020, 203, 110928.	3.5	4
124	Interaction of cobalt and iron hydroperoxo bleomycin with deoxyribonucleic acid (DNA): Dynamic vs. electronic structure considerations. Inorganica Chimica Acta, 2020, 509, 119682.	2.4	4
125	FREE RADICAL SCAVENGING ACTIVITY AND TOTAL POLYPHENOL CONTENT OF SECURIDACA LONGIPEDUNCULATA ROOTS AND LEAVES EXTRACTS. Farmacia, 2020, 68, 116-120.	0.4	4
126	New methylene blue analogues with N-piperidinyl-carbinol units: Synthesis, optical properties and in vitro internalization in human ovarian cancer cells. Dyes and Pigments, 2022, 205, 110460.	3.7	4

#	Article	IF	Citations
127	Carbon dioxide activation: Hydration by carbonic anhydrase and related systems – What makes a good catalyst?. Computational and Theoretical Chemistry, 2010, 942, 15-18.	1.5	3
128	Secondary structure elements in polylactic acid models. Journal of Mathematical Chemistry, 2012, 50, 703-733.	1.5	3
129	Studies of reaction of tetramethylthiourea with hydrogen peroxide: evidence of formation of tetramethylthiourea monoxide as a key intermediate of the reaction. Journal of Sulfur Chemistry, 2017, 38, 496-509.	2.0	3
130	Excess Ascorbate is a Chemical Stress Agent against Proteins and Cells. Pharmaceuticals, 2020, 13, 107.	3.8	3
131	Metallomics related to gallium compounds: biochemical and xenobiochemical aspects. Macedonian Journal of Chemistry and Chemical Engineering, 2014, 33, 39.	0.6	3
132	Dioxygen Activation by Copper-Bleomycin: Theoretical Considerations. Croatica Chemica Acta, 2014, 87, 75-78.	0.4	3
133	The dynamics of hemoglobin-haptoglobin complexes. Relevance for oxidative stress. Journal of Molecular Structure, 2022, 1250, 131703.	3.6	3
134	Hydrocarbon Oxygenation by Metal Nitrite Adducts: Theoretical Comparison with Ferryl-Based Oxygenation Agents. European Journal of Inorganic Chemistry, 2010, 2010, 1129-1132.	2.0	2
135	Phosphinoarylthiolato molybdenum and iron complexes [M{(SC6H4-2-PPh2)-κ2S,P}2(CO)2] (M=Mo, Fe): Analogous composition – Different structure. Inorganica Chimica Acta, 2013, 394, 289-294.	2.4	2
136	Scientometric analysis of relative performance in a key university in Romania. Scientometrics, 2014, 99, 463-474.	3.0	2
137	Testing antiplatelet and antioxidant activity of the extract of seven varieties of Allium cepa L Open Life Sciences, 2015, 10, .	1.4	2
138	Comparison of heme and nonheme iron-based 1-aminocyclopropane-1-carboxylic acid oxidase mimics: kinetic, mechanistic and computational studies. RSC Advances, 2015, 5, 2075-2079.	3.6	2
139	Kinetic, spectroscopic and in silico characterization of the first step of the reaction between glutathione and selenite. Inorganica Chimica Acta, 2020, 499, 119215.	2.4	2
140	Neutral Rhenadicarbaboranes with Re(CO)2(NO) Vertices: A Theoretical Study of Building Blocks for Rhenacarborane-Based Drug Delivery Agents. Molecules, 2020, 25, 110.	3.8	2
141	Formation of hydroxyl radical in aqueous solutions containing selenite and glutathione. Polyhedron, 2021, 198, 115072.	2.2	2
142	Binuclear ethylenedithiolate iron carbonyls: A density functional theory study. Inorganica Chimica Acta, 2021, 519, 120260.	2.4	2
143	Computational investigation of spectroscopic parameters in putative secondary structure elements for polylactic acid and comparison with experiment. Studia Universitatis Babes-Bolyai Chemia, 2017, 62, 495-513.	0.2	2
144	Variability in Biochemical Composition of Milk Among Three Representative Breeds of Dairy Cows from Romania. Studia Universitatis Babes-Bolyai Chemia, 2018, 63, 55-62.	0.2	2

#	Article	IF	CITATIONS
145	The Ferric-Oxo Moiety in Porphyrin Complexes – a Ferryl in Disguise?. Macroheterocycles, 2008, 1, 79-81.	0.5	2
146	Learning tasks as a possible treatment for DNA lesions induced by oxidative stress in hippocampal neurons. Neural Regeneration Research, 2013, 8, 3063-70.	3.0	2
147	Effect of <i>trans</i> -ligand on properties of nitric oxide motif in nitrosylcobinamide. Journal of Coordination Chemistry, 2022, 75, 1606-1616.	2.2	2
148	High spin to low spin change induced by reductive chemistry with iron-substituted Dawson polyoxometalate. Inorganic Chemistry Communication, 2012, 20, 70-72.	3.9	1
149	Exploring the possibility of high-valent copper in models of copper proteins with a three-histidine copper-binding motif. Open Chemistry, 2012, 10, 1527-1533.	1.9	1
150	Influence of Novel Gallium Complexes on the Homeostasis of Some Biochemical and Hematological Parameters in Rats. Biological Trace Element Research, 2013, 155, 387-395.	3.5	1
151	EPR investigation of libration motion of spin labeled hemerythrin. Journal of Molecular Structure, 2014, 1073, 18-23.	3.6	1
152	A mononuclear non-heme-iron dioxygen-carrying protein?. Journal of Molecular Graphics and Modelling, 2016, 69, 103-110.	2.4	1
153	Tetracapped tetrahedral ruthenium-sulfur clusters related to iron-sulfur structural units in metalloenzymes. Inorganica Chimica Acta, 2018, 475, 193-199.	2.4	1
154	Nickelâ€substituted ironâ€dependent cysteine dioxygenase: Implications for the dioxygenation activity of nickel model compounds. International Journal of Quantum Chemistry, 2018, 118, e25564.	2.0	1
155	On the Apparent Redox Reactivity of "Oxygen-Enriched Water― Biological Trace Element Research, 2020, 198, 350-358.	3.5	1
156	Cyclopentadienylmetal group 6 metal carbonyl derivatives with 2-propanoneoximato and related ligands. New Journal of Chemistry, 0, , .	2.8	1
157	Periodate-oxidized alginate as polycondensation reagent for hemoglobin. Studia Universitatis Babes-Bolyai Chemia, 2017, 62, 59-66.	0.2	1
158	How microbes detoxify superoxide, hydrogen peroxide and nitric oxide. The non-heme iron reductive paradigm. Journal of Inorganic Biochemistry, 2003, 96, 69.	3.5	0
159	The electronic structure of biologically relevant Fe(0) systems. International Journal of Quantum Chemistry, 2010, 110, 1848-1856.	2.0	O
160	What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?. Chemical Papers, 2011, 65, .	2.2	0
161	Is a mega-project the ELI in the room?. Nature, 2015, 520, 295-295.	27.8	O
162	Ruthenium dinitrosyl complexes – computational characterization of structure and reactivity. Journal of Coordination Chemistry, 2015, 68, 2409-2422.	2.2	0

#	Article	IF	CITATIONS
163	Chlorite reactivity with myoglobin: Analogy with peroxide and nitrite chemistry?. Journal of Inorganic Biochemistry, 2017, 172, 122-128.	3.5	0
164	The group 9 cyclopentadienylmetal <i>cis</i> -ethylenedithiolates as metallodithiolene ligands in metal carbonyl chemistry: analogies to benzene metal carbonyl complexes. New Journal of Chemistry, 2019, 43, 12711-12718.	2.8	0
165	Design, synthesis and structure of novel dendritic G-2 melamines comprising piperidine motifs as key linkers and 4-(n-octyloxy)aniline as a peripheral unit. Tetrahedron, 2019, 75, 130468.	1.9	O
166	Vincristine affects the redox reactivity of hemoglobin. Studia Universitatis Babes-Bolyai Chemia, 2021, 66, 325-332.	0.2	0
167	Polylactic acid interactions with bioceramic surfaces. Studia Universitatis Babes-Bolyai Chemia, 2021, 66, 107-121.	0.2	0
168	Arguable Precedence for the World Wars of the Twentieth Century. Social Evolution and History, 2018, 17, 96-108.	0.5	0
169	Isolation, purification and characterization of ascorbate oxidase and peroxidase from Cucurbita pepo medullosa. Studia Universitatis Babes-Bolyai Chemia, 2019, 64, 49-60.	0.2	0
170	Spin labelled hemoglobin-based oxygen carriers (HBOC): preparation and evaluation of in vivo / in vitro stability. Studia Universitatis Babes-Bolyai Chemia, 2020, 65, 121-132.	0.2	0
171	Title is missing!. , 2020, 15, e0225530.		0
172	Title is missing!. , 2020, 15, e0225530.		0
173	Title is missing!. , 2020, 15, e0225530.		0
174	Title is missing!. , 2020, 15, e0225530.		0