Vittorio Pace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8635155/publications.pdf

Version: 2024-02-01

		101496	138417
110	3,963	36	58
papers	citations	h-index	g-index
150	150	150	2843
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	2â€Methyltetrahydrofuran (2â€MeTHF): A Biomassâ€Derived Solvent with Broad Application in Organic Chemistry. ChemSusChem, 2012, 5, 1369-1379.	3.6	520
2	Increasing the Reactivity of Amides towards Organometallic Reagents: An Overview. Advanced Synthesis and Catalysis, 2014, 356, 3697-3736.	2.1	207
3	Exploiting a "Beast―in Carbenoid Chemistry: Development of a Straightforward Direct Nucleophilic Fluoromethylation Strategy. Journal of the American Chemical Society, 2017, 139, 13648-13651.	6.6	104
4	Cyclopentyl Methyl Ether: An Elective Ecofriendly Ethereal Solvent in Classical and Modern Organic Chemistry. ChemSusChem, 2019, 12, 40-70.	3.6	100
5	Structures of Highly Twisted Amides Relevant to Amide Nâ^C Crossâ€Coupling: Evidence for Groundâ€State Amide Destabilization. Chemistry - A European Journal, 2016, 22, 14494-14498.	1.7	94
6	Cu(I)–NHC Catalyzed Asymmetric Silyl Transfer to Unsaturated Lactams and Amides. Organic Letters, 2014, 16, 476-479.	2.4	90
7	Addition of lithium carbenoids to isocyanates: a direct access to synthetically useful N-substituted 2-haloacetamides. Chemical Communications, 2013, 49, 8383.	2.2	85
8	Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatshefte Fýr Chemie, 2017, 148, 37-48.	0.9	84
9	Chemoselective Activation Strategies of Amidic Carbonyls towards Nucleophilic Reagents. Australian Journal of Chemistry, 2013, 66, 507.	0.5	78
10	Dynamic Kinetic Resolution <i>via</i> Hydrolaseâ€Metal Combo Catalysis in Stereoselective Synthesis of Bioactive Compounds. Advanced Synthesis and Catalysis, 2012, 354, 2585-2611.	2.1	76
11	Efficient Access to Allâ€Carbon Quaternary and Tertiary αâ€Functionalized Homoallylâ€type Aldehydes from Ketones. Angewandte Chemie - International Edition, 2017, 56, 12677-12682.	7.2	71
12	Chemoselective Schwartz Reagent Mediated Reduction of Isocyanates to Formamides. Organic Letters, 2016, 18, 2750-2753.	2.4	70
13	2-Methyltetrahydrofuran as a suitable green solvent for phthalimide functionalization promoted by supported KF. Green Chemistry, 2010, 12, 1380.	4.6	68
14	Improved Arndtâ^'Eistert Synthesis of α-Diazoketones Requiring Minimal Diazomethane in the Presence of Calcium Oxide as Acid Scavenger. Journal of Organic Chemistry, 2010, 75, 5760-5763.	1.7	65
15	Modular and Chemoselective Strategy for the Direct Access to α-Fluoroepoxides and Aziridines via the Addition of Fluoroiodomethyllithium to Carbonyl-Like Compounds. Organic Letters, 2019, 21, 584-588.	2.4	65
16	Telescoped, Divergent, Chemoselective C1 and C1â€C1 Homologation of Imine Surrogates: Access to Quaternary Chloro―and Halomethylâ€Trifluoromethyl Aziridines. Angewandte Chemie - International Edition, 2019, 58, 2479-2484.	7.2	64
17	Bromomethyllithium-mediated chemoselective homologation of disulfides to dithioacetals. Chemical Communications, 2016, 52, 2639-2642.	2.2	59
18	NHC–Cu(i) catalysed asymmetric conjugate silyl transfer to unsaturated lactones: application in kinetic resolution. Chemical Communications, 2013, 49, 5150.	2.2	58

#	Article	IF	CITATIONS
19	Homologation chemistry with nucleophilic \hat{l}_{\pm} -substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges. Chemical Communications, 2018, 54, 6692-6704.	2.2	58
20	Synthesis of $\hat{l}\pm,\hat{l}^2$ -Unsaturated $\hat{l}\pm\hat{a}\in^2$ -Haloketones through the Chemoselective Addition of Halomethyllithiums to Weinreb Amides. Journal of Organic Chemistry, 2013, 78, 7764-7770.	1.7	57
21	Lithium Halomethylcarbenoids: Preparation and Use in the Homologation of Carbon Electrophiles. Chemical Record, 2016, 16, 2061-2076.	2.9	55
22	Isocyanates and isothiocyanates as versatile platforms for accessing (thio)amide-type compounds. Organic and Biomolecular Chemistry, 2016, 14, 7848-7854.	1.5	55
23	Direct and Chemoselective Synthesis of Tertiary Difluoroketones via Weinreb Amide Homologation with a CHF ₂ -Carbene Equivalent. Organic Letters, 2019, 21, 8261-8265.	2.4	53
24	Highly regioselective control of 1,2-addition of organolithiums to $\hat{l}\pm,\hat{l}^2$ -unsaturated compounds promoted by lithium bromide in 2-methyltetrahydrofuran: a facile and eco-friendly access to allylic alcohols and amines. Tetrahedron, 2011, 67, 2670-2675.	1.0	52
25	Evidence and isolation of tetrahedral intermediates formed upon the addition of lithium carbenoids to Weinreb amides and N-acylpyrroles. Chemical Communications, 2017, 53, 9498-9501.	2.2	52
26	Chemoselective Addition of Halomethyllithiums to Functionalized Isatins: A Straightforward Access to Spiroâ€Epoxyoxindoles. Advanced Synthesis and Catalysis, 2016, 358, 172-177.	2.1	47
27	2-Methyltetrahydrofuran: A Versatile Eco-Friendly Alternative to THF in Organometallic Chemistry. Australian Journal of Chemistry, 2012, 65, 301.	0.5	46
28	Effective Monoallylation of Anilines Catalyzed by Supported KF. Organic Letters, 2007, 9, 2661-2664.	2.4	45
29	Homologation of Isocyanates with Lithium Carbenoids: A Straightforward Access to \hat{l} ±-Halomethyl- and \hat{l} ±, \hat{l} ±-Dihalomethylamides. Synthesis, 2014, 46, 2897-2909.	1.2	45
30	New Perspectives in Lithium Carbenoid Mediated Homologations. Synlett, 2017, 28, 879-888.	1.0	45
31	Highly efficient synthesis of functionalized \hat{l} ±-oxyketones via Weinreb amides homologation with \hat{l} ±-oxygenated organolithiums. Chemical Communications, 2016, 52, 7584-7587.	2.2	44
32	Chemoselective Synthesis of <i>N</i> â€Substituted αâ€Aminoâ€Î±â€²â€chloro Ketones <i>via</i> Chloromethyl of Glycineâ€Derived Weinreb Amides. Advanced Synthesis and Catalysis, 2013, 355, 919-926.	ation 2.1	41
33	Chemoselective efficient synthesis of functionalized \hat{l}^2 -oxonitriles through cyanomethylation of Weinreb amides. Organic and Biomolecular Chemistry, 2015, 13, 1969-1973.	1.5	41
34	Expeditious and Chemoselective Synthesis of \hat{l} ±-Aryl and \hat{l} ±-Alkyl Selenomethylketones via Homologation Chemistry. Organic Letters, 2018, 20, 2685-2688.	2.4	39
35	Weinreb Amides as Privileged Acylating Agents for Accessing α-Substituted Ketones. Synthesis, 2019, 51, 2792-2808.	1.2	39
36	A Robust, Ecoâ€Friendly Access to Secondary Thioamides through the Addition of Organolithium Reagents to Isothiocyanates in Cyclopentyl Methyl Ether (CPME). Chemistry - A European Journal, 2015, 21, 18966-18970.	1.7	38

#	Article	IF	CITATIONS
37	Highly efficient chemoselective N-TBS protection of anilines under exceptional mild conditions in the eco-friendly solvent 2-methyltetrahydrofuran. Green Chemistry, 2011, 13, 1986.	4.6	37
38	Biocatalyzed Synthesis of Statins: A Sustainable Strategy for the Preparation of Valuable Drugs. Catalysts, 2019, 9, 260.	1.6	36
39	Synthesis and biological evaluation of new aryl-alkyl(alkenyl)-4-benzylpiperidines, novel Sigma Receptor (SR) modulators, as potential anticancer-agents. European Journal of Medicinal Chemistry, 2016, 124, 649-665.	2.6	32
40	Direct and Chemoselective Electrophilic Monofluoromethylation of Heteroatoms (<i>O</i> -, <i>S-</i> -,) Tj ETQq0 (0 0 rgBT / 2.4	Overlock 10
41	Efficient Horner–Wadsworth–Emmons intramolecular cyclisation of a N-substituted phthalimide promoted by KF-Alumina: a general tool for the synthesis of functionalised isoindolinones. Tetrahedron Letters, 2009, 50, 3050-3053.	0.7	30
42	Robust eco-friendly protocol for the preparation of \hat{l}^3 -hydroxy- $\hat{l}\pm,\hat{l}^2$ -acetylenic esters by sequential one-pot elimination $\hat{a}\in \hat{l}^4$ -addition of 2-bromoacrylates to aldehydes promoted by LTMP in 2-MeTHF. Green Chemistry, 2012, 14, 1859.	4.6	30
43	Expanding the Synthetic Portfolio of Organolithiums: Direct Use in Catalytic Crossâ€Coupling Reactions. ChemCatChem, 2014, 6, 1516-1519.	1.8	30
44	Chemoselective Additions of Chloromethyllithium Carbenoid to Cyclic Enones: A Direct Access to Chloromethyl Allylic Alcohols. Advanced Synthesis and Catalysis, 2014, 356, 1761-1766.	2.1	30
45	Palladium-Catalyzed Internal Nucleophile-Assisted Hydration–Olefin Insertion Cascade: Diastereoselective Synthesis of 2,3-Dihydro-1 <i>H</i> i>inden-1-ones. Organic Letters, 2016, 18, 3442-3445.	2.4	29
46	Chemoenzymatic synthesis of chiral unsymmetrical benzoin esters. Tetrahedron, 2011, 67, 7321-7329.	1.0	26
47	Halomethyllithium Carbenoids: Versatile Reagents for the Homologation of Electrophilic Carbon Units. Australian Journal of Chemistry, 2014, 67, 311.	0.5	26
48	Highly Efficient Synthesis of New αâ€Arylaminoâ€Î±â€²â€chloropropanâ€2â€ones <i>via</i> Oxidative Hydrolysi Vinyl Chlorides Promoted by Calcium Hypochlorite. Advanced Synthesis and Catalysis, 2009, 351, 3199-3206.	s of 2.1	25
49	Chemoselective reduction of isothiocyanates to thioformamides mediated by the Schwartz reagent. Organic and Biomolecular Chemistry, 2019, 17, 1970-1978.	1.5	25
50	Pseudo-Dipeptide Bearing \hat{l} ±, \hat{l} ±-Difluoromethyl Ketone Moiety as Electrophilic Warhead with Activity against Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 1398.	1.8	25
51	Highly chemoselective difluoromethylative homologation of iso(thio)cyanates: expeditious access to unprecedented $\hat{l}_{\pm},\hat{l}_{\pm}$ -difluoro(thio)amides. Chemical Communications, 2019, 55, 12960-12963.	2.2	24
52	Efficient Access to Allâ€Carbon Quaternary and Tertiary αâ€Functionalized Homoallylâ€type Aldehydes from Ketones. Angewandte Chemie, 2017, 129, 12851-12856.	1.6	23
53	Sustainable Asymmetric Organolithium Chemistry: Enantio―and Chemoselective Acylations through Recycling of Solvent, Sparteine, and Weinreb "Amine― ChemSusChem, 2019, 12, 1147-1154.	3.6	23
54	Chemoselective Homologation–Deoxygenation Strategy Enabling the Direct Conversion of Carbonyls into (<i>n+1</i>)-Halomethyl-Alkanes. Organic Letters, 2020, 22, 7629-7634.	2.4	23

#	Article	IF	CITATIONS
55	Highly efficient and environmentally benign preparation of Weinreb amides in the biphasic system 2-MeTHF/water. RSC Advances, 2013, 3, 10158.	1.7	22
56	Eco-friendly chemoselective N-functionalization of isatins mediated by supported KF in 2-MeTHF. Green Chemistry, 2015, 17, 4194-4197.	4.6	22
57	Direct Access to 9-Chloro-1 <i>H</i> -benzo[<i>b</i>]furo[3,4- <i>e</i>]azepin-1-ones via Palladium(II)-Catalyzed Intramolecular <i>syn</i> -Oxypalladation/Olefin Insertion/sp ² -C–H Bond Activation Cascade. Organic Letters, 2019, 21, 5784-5788.	2.4	22
58	A greener and efficient access to substituted four- and six-membered sulfur-bearing heterocycles. Organic and Biomolecular Chemistry, 2017, 15, 5000-5015.	1.5	21
59	Merging lithium carbenoid homologation and enzymatic reduction: A combinative approach to the HIV-protease inhibitor Nelfinavir. Tetrahedron, 2018, 74, 2211-2217.	1.0	21
60	Palladium-Catalyzed Regioselective <i>Syn</i> -Chloropalladation–Olefin Insertion–Oxidative Chlorination Cascade: Synthesis of Dichlorinated Tetrahydroquinolines. Organic Letters, 2019, 21, 3465-3469.	2.4	21
61	Highly chemoselective synthesis of aryl allylic sulfoxides through calcium hypobromite oxidation of aryl allylic sulfides. Tetrahedron Letters, 2012, 53, 967-972.	0.7	20
62	Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Fourâ€Membered Sulfurâ€Containing Cycles. Angewandte Chemie - International Edition, 2021, 60, 24854-24858.	7.2	20
63	Synthesis of 6,12-Epiminodibenzo[<i>b</i> , <i>f</i>][1,5]diazocines via an Ytterbium Triflate-Catalyzed, AB ₂ Three-Component Reaction. Journal of Organic Chemistry, 2016, 81, 9687-9694.	1.7	19
64	Substituted αâ€Sulfur Methyl Carbanions: Effective Homologating Agents for the Chemoselective Preparation of βâ€Oxo Thioethers from Weinreb Amides. European Journal of Organic Chemistry, 2018, 2018, 2466-2470.	1,2	19
65	Chemoselective CaOâ€Mediated Acylation of Alcohols and Amines in 2â€Methyltetrahydrofuran. ChemSusChem, 2013, 6, 905-910.	3.6	18
66	Homologation of halostannanes with carbenoids: a convenient and straightforward one-step access to \hat{l}_{\pm} -functionalized organotin reagents. Chemical Communications, 2018, 54, 10112-10115.	2.2	18
67	Halogenâ€Imparted Reactivity in Lithium Carbenoid Mediated Homologations of Imine Surrogates: Direct Assembly of bisâ€Trifluoromethylâ€Î²â€Diketiminates and the Dual Role of LiCH 2 I. Angewandte Chemie - International Edition, 2020, 59, 20852-20857.	7.2	17
68	Structural bases for understanding the stereoselectivity in ketone reductions with ADH from Thermus thermophilus: A quantitative model. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 23-31.	1.8	16
69	Highly efficient and chemoselective α-iodination of acrylate esters through Morita–Baylis–Hillman-type chemistry. Organic and Biomolecular Chemistry, 2013, 11, 1085.	1.5	16
70	Potassium-Exchanged Zirconium Hydrogen Phosphate $[\hat{l}\pm -Zr(KPO4)2]$ -Catalyzed Synthesis of 2-Amino-4H-pyran Derivatives under Solvent-Free Conditions. Synthesis, 2016, 48, 1533-1540.	1.2	16
71	Carbenoid-Mediated Homologation Tactics for Assembling (Fluorinated) Epoxides and Aziridines. Synlett, 2021, 32, 551-560.	1.0	16
72	Telescoped, Divergent, Chemoselective C1 and C1â€C1 Homologation of Imines Surrogates: A Straightforward Access to Quaternary Chloro―and Halomethylâ€trifluoromethylâ€aziridines. Angewandte Chemie, 2018, 131, 2501.	1.6	14

#	Article	IF	CITATIONS
73	Identification of dual Sigma1 receptor modulators/acetylcholinesterase inhibitors with antioxidant and neurotrophic properties, as neuroprotective agents. European Journal of Medicinal Chemistry, 2018, 158, 353-370.	2.6	14
74	Fluoroiodomethane: A versatile CH2F Source. Australian Journal of Chemistry, 2018, 71, 473.	0.5	14
75	A Combination of Pharmacophore and Dockingâ€based Virtual Screening to Discover new Tyrosinase Inhibitors. Molecular Informatics, 2020, 39, e1900054.	1.4	14
76	Straightforward chemoselective access to unsymmetrical dithioacetals through a thiosulfonate homologation-nucleophilic substitution sequence. Chemical Communications, 2020, 56, 12395-12398.	2.2	14
77	Modular and Chemoselective Strategy for Accessing (Distinct) α,αâ€Dihaloketones from Weinreb Amides and Dihalomethyllithiums. Advanced Synthesis and Catalysis, 2020, 362, 5056-5061.	2.1	14
78	\hat{l}_{\pm} -Arylamino Diazoketones: Diazomethane-Loading Controlled Synthesis, Spectroscopic Investigations, and Structural X-ray Analysis. Journal of Organic Chemistry, 2018, 83, 4336-4347.	1.7	13
79	Electrophilicity Scale of Activated Amides: 17 Oâ€NMR and 15 Nâ€NMR Chemical Shifts of Acyclic Twisted Amides in Nâ°C(O) Crossâ€Coupling. Chemistry - A European Journal, 2020, 26, 16246-16250.	1.7	13
80	¹⁷ O NMR and ¹⁵ N NMR chemical shifts of sterically-hindered amides: ground-state destabilization in amide electrophilicity. Chemical Communications, 2019, 55, 4423-4426.	2.2	12
81	The synthetic versatility of the Tiffeneau–Demjanov chemistry in homologation tactics. Monatshefte Für Chemie, 2019, 150, 2011-2019.	0.9	12
82	α-Amino-α´-Halomethylketones: Synthetic Methodologies and Pharmaceutical Applications as Serine and Cysteine Protease Inhibitors. Mini-Reviews in Medicinal Chemistry, 2013, 13, 988-996.	1.1	12
83	Highly Regioselective and Efficient Synthesis of Aminoepoxides by Ring Closure of Aminohalohydrins Mediated by KF-Celite. Synlett, 2011, 2011, 1831-1834.	1.0	11
84	Synthesis of stable $\hat{l}\pm$ -fluoromethyl putative carbanions via a chemoselective reduction-monofluoromethylation sequence of diselenides under sustainable conditions. Tetrahedron, 2021, 85, 131921.	1.0	11
85	A straightforward and general access to α-phthalimido-α′-substituted propan-2-ones. Tetrahedron Letters, 2012, 53, 5106-5109.	0.7	10
86	Taking advantage of lithium monohalocarbenoid intrinsic α-elimination in 2-MeTHF: controlled epoxide ring-opening <i>en route</i> to halohydrins. Organic and Biomolecular Chemistry, 2021, 19, 2038-2043.	1.5	10
87	Preparation of 2-Amino-4H-chromene Derivatives from Coumarins in Basic Media. European Journal of Organic Chemistry, 2006, 2006, 746-751.	1.2	9
88	Chemoselective oxidative hydrolysis of EWG protected \hat{l} ±-arylamino vinyl bromides to \hat{l} ±-arylamino- \hat{l} ± \hat{l} 2-bromoacetones. Tetrahedron Letters, 2013, 54, 4369-4372.	0.7	9
89	A practical guide for using lithium halocarbenoids in homologation reactions. Monatshefte FÃ $^1\!\!/\!4$ r Chemie, 2018, 149, 1285-1291.	0.9	9
90	A Straightforward Homologation of Carbon Dioxide with Magnesium Carbenoids en Route to $\hat{l}\pm\hat{a}\in Halocarboxylic$ Acids. Advanced Synthesis and Catalysis, 2019, 361, 1001-1006.	2.1	9

#	Article	IF	CITATIONS
91	Design, Synthesis, and Pharmacological Evaluation of Novel Î ² 2/3 Subunit-Selective Î ³ -Aminobutyric Acid Type A (GABA _A) Receptor Modulators. Journal of Medicinal Chemistry, 2019, 62, 317-341.	2.9	9
92	Chemoenzymatic Synthesis of Carbohydrates as Antidiabetic and Anticancer Drugs. Current Topics in Medicinal Chemistry, 2015, 14, 2694-2711.	1.0	9
93	Novel Enantiopure Sigma Receptor Modulators: Quick (Semi-)Preparative Chiral Resolution via HPLC and Absolute Configuration Assignment. Molecules, 2016, 21, 1210.	1.7	8
94	Recent advances in the synthesis and reactivity of spiro-epoxyoxindoles. Chemistry of Heterocyclic Compounds, 2018, 54, 389-393.	0.6	8
95			

#	Article	IF	CITATIONS
109	Novel Dual Ligands Targeting Sigma1 Receptor and Acetylcholinesterase Endowed with Antioxidant Properties. Proceedings (mdpi), 2019, 22, .	0.2	0
110	Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Fourâ€membered Sulfurâ€Containing Cycles. Angewandte Chemie, 0, , .	1.6	0