Hyung-Jun Koo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/863424/publications.pdf

Version: 2024-02-01

41 papers 1,899 citations

331538 21 h-index 289141 40 g-index

42 all docs 42 docs citations 42 times ranked 3138 citing authors

#	Article	IF	CITATIONS
1	Size-dependent scattering efficiency in dye-sensitized solar cell. Inorganica Chimica Acta, 2008, 361, 677-683.	1.2	250
2	Towards Allâ€Soft Matter Circuits: Prototypes of Quasiâ€Liquid Devices with Memristor Characteristics. Advanced Materials, 2011, 23, 3559-3564.	11.1	189
3	Cytotoxicity of Gallium–Indium Liquid Metal in an Aqueous Environment. ACS Applied Materials & Interfaces, 2018, 10, 17448-17454.	4.0	174
4	Selective Wettingâ€Induced Microâ€Electrode Patterning for Flexible Microâ€Supercapacitors. Advanced Materials, 2014, 26, 5108-5112.	11.1	146
5	Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27562-27570.	4.0	139
6	Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking <i>In Vitro</i> Models in Anti-Cancer Drug Development. Theranostics, 2018, 8, 5259-5275.	4.6	138
7	lonic Current Rectification in Softâ€Matter Diodes with Liquidâ€Metal Electrodes. Advanced Functional Materials, 2012, 22, 625-631.	7.8	113
8	Conductive biomaterials for tissue engineering applications. Journal of Industrial and Engineering Chemistry, 2017, 51, 12-26.	2.9	98
9	Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules, 2018, 23, 2210.	1.7	58
10	On the l–V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters. Solar Energy Materials and Solar Cells, 2007, 91, 1749-1754.	3.0	51
11	Aqueous soft matter based photovoltaic devices. Journal of Materials Chemistry, 2011, 21, 72-79.	6.7	46
12	Exosome-mediated diagnosis of pancreatic cancer using lectin-conjugated nanoparticles bound to selective glycans. Biosensors and Bioelectronics, 2021, 177, 112980.	5. 3	39
13	Ionic current devicesâ€"Recent progress in the merging of electronic, microfluidic, and biomimetic structures. Biomicrofluidics, 2013, 7, 31501.	1.2	35
14	Flexible and Wearable Fiber Microsupercapacitors Based on Carbon Nanotube–Agarose Gel Composite Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 19925-19933.	4.0	34
15	Ionâ€Current Diode with Aqueous Gel/SiO ₂ Nanofilm Interfaces. Small, 2010, 6, 1393-1397.	5.2	32
16	Synthesis and Functionalization of \hat{l}^2 -Glucan Particles for the Effective Delivery of Doxorubicin Molecules. ACS Omega, 2019, 4, 668-674.	1.6	32
17	Toward Eco-Friendly Dye-Sensitized Solar Cells (DSSCs): Natural Dyes and Aqueous Electrolytes. Energies, 2022, 15, 219.	1.6	31
18	Autonomic Molecular Transport by Polymer Films Containing Programmed Chemical Potential Gradients. Journal of the American Chemical Society, 2015, 137, 5066-5073.	6.6	30

#	Article	IF	CITATIONS
19	Fabrication of heterosensitizer-junction dye-sensitized solar cells. Applied Physics Letters, 2008, 92, .	1.5	28
20	Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network. Scientific Reports, 2013, 3, 2357.	1.6	28
21	Biomimetic photocatalytic reactor with a hydrogel-embedded microfluidic network. Journal of Materials Chemistry A, 2013, 1, 11106.	5.2	22
22	Stable anatase TiO2 coating on quartz fibers by atomic layer deposition for photoactive light-scattering in dye-sensitized solar cells. Nanoscale, 2012, 4, 4731.	2.8	20
23	Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks. Biomicrofluidics, 2017, 11, 024104.	1.2	17
24	Alginate-chitosan Hydrogel Patch with Beta-glucan Nanoemulsion for Antibacterial Applications. Biotechnology and Bioprocess Engineering, 2021, 26, 71-77.	1.4	17
25	Impedance study on humidity dependent conductivity of polymer composites with conductive nanofillers. Composites Part B: Engineering, 2020, 202, 108412.	5.9	15
26	Facile fabrication of graphene composite microwires via drying-induced size reduction of hydrogel filaments. RSC Advances, 2014, 4, 20927-20931.	1.7	14
27	Polymer Brushes Patterned with Micrometer-Scale Chemical Gradients Using Laminar Co-Flow. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14320-14326.	4.0	13
28	General Method for Forming Micrometer-Scale Lateral Chemical Gradients in Polymer Brushes. Chemistry of Materials, 2014, 26, 2678-2683.	3.2	13
29	A humidityâ€sensing composite microfiber based on moistureâ€induced swelling of an agarose polymer matrix. Polymer Composites, 2019, 40, 3582-3587.	2.3	13
30	A conducting composite microfiber containing graphene/silver nanowires in an agarose matrix with fast humidity sensing ability. Polymer, 2019, 164, 1-7.	1.8	13
31	Effect of Surrounding Solvents on Interfacial Behavior of Gallium-Based Liquid Metal Droplets. Materials, 2022, 15, 706.	1.3	9
32	A fully textile-based skin pH sensor. Journal of Industrial Textiles, 2022, 51, 441S-457S.	1.1	9
33	Eco-Friendly Dye-Sensitized Solar Cells Based on Water-Electrolytes and Chlorophyll. Materials, 2021, 14, 2150.	1.3	8
34	Study and Evaluation of the Potential of Lipid Nanocarriers for Transdermal Delivery of siRNA. Biotechnology Journal, 2020, 15, e2000079.	1.8	7
35	Quantification of Unknown Nanoscale Biomolecules Using the Average-Weight-Difference Method. Applied Sciences (Switzerland), 2019, 9, 130.	1.3	6
36	Facile fabrication of polyaniline films with hierarchical porous networks for enhanced electrochemical activity. Journal of Industrial and Engineering Chemistry, 2020, 86, 81-89.	2.9	4

Hyung-Jun Koo

#	Article	IF	CITATIONS
37	Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications. Biotechnology Journal, 2020, 15, e2000343.	1.8	3
38	Facile fabrication and photocatalytic activity of Ag/AgI/rGO films. Korean Journal of Chemical Engineering, 2019, 36, 2104-2109.	1.2	2
39	Note: Qualitative degradation of the pesticide coumaphos in solution, controlled aerosol, and solid phases on quaternary ammonium fluoride polymer brushes. Polymers for Advanced Technologies, 2017, 28, 567-567.	1.6	1
40	Qualitative degradation of the pesticide coumaphos in solution, controlled aerosol, and solid phases on quaternary ammonium fluoride polymer brushes. Polymers for Advanced Technologies, 2017, 28, 73-79.	1.6	1
41	Improvement of Dye-Hydrogel Based Photovoltaics via Hydroquinone Electrolyte Mediators. Transactions of the Korean Hydrogen and New Energy Society, 2016, 27, 540-546.	0.1	0