
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8634091/publications.pdf Version: 2024-02-01

MADRIIS LÃORDICH

#	Article	IF	CITATIONS
1	ATRX and RECQ5 define distinct homologous recombination subpathways. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
2	Homologous Recombination Subpathways: A Tangle to Resolve. Frontiers in Genetics, 2021, 12, 723847.	2.3	27
3	POLÎ,-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis. Nature Cell Biology, 2021, 23, 1095-1104.	10.3	55
4	Turning end-joining upside down in mitosis. Molecular and Cellular Oncology, 2021, 8, 2007029.	0.7	1
5	An Assessment of Radiation Doses From Radon Exposures Using a Mouse Model System. International Journal of Radiation Oncology Biology Physics, 2020, 108, 770-778.	0.8	6
6	Spontaneous and Radiation-Induced Chromosome Aberrations in Primary Fibroblasts of Patients With Pediatric First and Second Neoplasms. Frontiers in Oncology, 2020, 10, 1338.	2.8	4
7	Fractionation-Dependent Radiosensitization by Molecular Targeting of Nek1. Cells, 2020, 9, 1235.	4.1	5
8	One end to rule them all: Non-homologous end-joining and homologous recombination at DNA double-strand breaks. British Journal of Radiology, 2020, 93, 20191054.	2.2	37
9	Differences in the Response to DNA Double-Strand Breaks between Rod Photoreceptors of Rodents, Pigs, and Humans. Cells, 2020, 9, 947.	4.1	5
10	Hazards of human spaceflight. Science, 2019, 364, 127-128.	12.6	46
11	AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair. Scientific Reports, 2018, 8, 17282.	3.3	25
12	DNA repair synthesis and histone deposition partner during homologous recombination. Molecular and Cellular Oncology, 2018, 5, e1511210.	0.7	10
13	The pendulum of the Ku-Ku clock. DNA Repair, 2018, 71, 164-171.	2.8	52
14	ATRX Promotes DNA Repair Synthesis and Sister Chromatid Exchange during Homologous Recombination. Molecular Cell, 2018, 71, 11-24.e7.	9.7	108
15	DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Molecular Cell, 2017, 65, 671-684.e5.	9.7	184
16	A Process of Resection-Dependent Nonhomologous End Joining Involving the Goddess Artemis. Trends in Biochemical Sciences, 2017, 42, 690-701.	7.5	86
17	DNA non-homologous end-joining enters the resection arena. Oncotarget, 2017, 8, 93317-93318.	1.8	5
18	Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability. Molecular Cell, 2016, 62, 903-917.	9.7	80

#	Article	IF	CITATIONS
19	How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochemical Journal, 2015, 471, 1-11.	3.7	81
20	Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12396-12401.	7.1	20
21	PTIP associates with Artemis to dictate DNA repair pathway choice. Genes and Development, 2014, 28, 2693-2698.	5.9	95
22	Requirement for PBAF in Transcriptional Repression and Repair at DNA Breaks in Actively Transcribed Regions of Chromatin. Molecular Cell, 2014, 55, 723-732.	9.7	230
23	Inefficient Double-Strand Break Repair in Murine Rod Photoreceptors with Inverted Heterochromatin Organization. Current Biology, 2014, 24, 1080-1090.	3.9	32
24	Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. Journal of Cell Biology, 2014, 206, 877-894.	5.2	92
25	Catalytic and Noncatalytic Roles of the CtIP Endonuclease in Double-Strand Break End Resection. Molecular Cell, 2014, 54, 1022-1033.	9.7	158
26	ATM Release at Resected Double-Strand Breaks Provides Heterochromatin Reconstitution to Facilitate Homologous Recombination. PLoS Genetics, 2013, 9, e1003667.	3.5	47
27	Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Research, 2013, 41, 9719-9731.	14.5	74
28	Understanding the limitations of radiation-induced cell cycle checkpoints. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 271-283.	5.2	166
29	Elevated radiation-induced γH2AX foci in G2 phase heterozygous BRCA2 fibroblasts. Radiotherapy and Oncology, 2011, 101, 46-50.	0.6	6
30	The role of homologous recombination in radiation-induced double-strand break repair. Radiotherapy and Oncology, 2011, 101, 7-12.	0.6	161
31	Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO Journal, 2011, 30, 1079-1092.	7.8	381
32	Sister chromatid exchanges occur in G ₂ -irradiated cells. Cell Cycle, 2011, 10, 222-228.	2.6	37
33	DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Research, 2011, 39, 6489-6499.	14.5	278
34	CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Research, 2011, 39, 2144-2152.	14.5	97
35	Checkpoint Control Following Radiation Exposure. , 2011, , 53-77.		0
36	Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate. DNA Repair, 2010, 9, 1050-1063.	2.8	62

#	Article	IF	CITATIONS
37	The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair, 2010, 9, 1273-1282.	2.8	269
38	53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nature Cell Biology, 2010, 12, 177-184.	10.3	289
39	Inducible response required for repair of low-dose radiation damage in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14205-14210.	7.1	121
40	Role of ATM and the Damage Response Mediator Proteins 53BP1 and MDC1 in the Maintenance of G ₂ /M Checkpoint Arrest. Molecular and Cellular Biology, 2010, 30, 3371-3383.	2.3	97
41	The Limitations of the G1-S Checkpoint. Cancer Research, 2010, 70, 4412-4421.	0.9	70
42	γH2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limitations and optimization. Cell Cycle, 2010, 9, 662-669.	2.6	545
43	The role of ATM signalling in DNA double strand break repair FASEB Journal, 2010, 24, 411.1.	0.5	0
44	Contrast Medium–enhanced Radiation Damage Caused by CT Examinations. Radiology, 2009, 253, 706-714.	7.3	85
45	ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO Journal, 2009, 28, 3413-3427.	7.8	457
46	ATM Signaling Facilitates Repair of DNA Double-Strand Breaks Associated with Heterochromatin. Molecular Cell, 2008, 31, 167-177.	9.7	777
47	DNA Double-Strand Break Repair of Blood Lymphocytes and Normal Tissues Analysed in a Preclinical Mouse Model: Implications for Radiosensitivity Testing. Clinical Cancer Research, 2008, 14, 6546-6555.	7.0	142
48	Chromosome breakage after G2 checkpoint release. Journal of Cell Biology, 2007, 176, 749-755.	5.2	220
49	An Imperfect G ₂ M Checkpoint Contributes to Chromosome Instability Following Irradiation of S and G ₂ Phase Cells. Cell Cycle, 2007, 6, 1682-1686.	2.6	93
50	The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nature Reviews Cancer, 2007, 7, 861-869.	28.4	514
51	X-irradiation of cells on glass slides has a dose doubling impact. DNA Repair, 2007, 6, 1692-1697.	2.8	47
52	Radiation-induced DNA damage responses. Radiation Protection Dosimetry, 2006, 122, 124-127.	0.8	118
53	Assessing the likelihood of severe side effects in radiotherapy. International Journal of Cancer, 2006, 118, 2652-2656.	5.1	28
54	<i>In vivo</i> formation and repair of DNA double-strand breaks after computed tomography examinations. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8984-8989.	7.1	387

#	Article	IF	CITATIONS
55	Harmonising the response to DSBs: a new string in the ATM bow. DNA Repair, 2005, 4, 749-759.	2.8	91
56	A Double-Strand Break Repair Defect in ATM-Deficient Cells Contributes to Radiosensitivity. Cancer Research, 2004, 64, 500-508.	0.9	328
57	Enhanced fidelity for rejoining radiation-induced DNA double-strand breaks in the G2 phase of Chinese hamster ovary cells. Nucleic Acids Research, 2004, 32, 2677-2684.	14.5	30
58	ATM and DNA-PK Function Redundantly to Phosphorylate H2AX after Exposure to Ionizing Radiation. Cancer Research, 2004, 64, 2390-2396.	0.9	896
59	A Pathway of Double-Strand Break Rejoining Dependent upon ATM, Artemis, and Proteins Locating to γ-H2AX Foci. Molecular Cell, 2004, 16, 715-724.	9.7	790
60	Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5057-5062.	7.1	1,449
61	Pathways of DNA Double-Strand Break Repair during the Mammalian Cell Cycle. Molecular and Cellular Biology, 2003, 23, 5706-5715.	2.3	1,040
62	Spatial Distribution and Yield of DNA Double-Strand Breaks Induced by 3–7 MeV Helium Ions in Human Fibroblasts. Radiation Research, 2002, 158, 32-42.	1.5	38
63	Efficient Rejoining of Radiation-induced DNA Double-strand Breaks in Centromeric DNA of Human Cells. Journal of Biological Chemistry, 2002, 277, 20572-20582.	3.4	31