Kamlesh Shrivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8634047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Citrate functionalized gold nanoparticles assisted micro extraction of L-cysteine in milk and water samples using Fourier transform infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120523.	3.9	11
2	Interaction of an imidazolium based ionic liquid with antidepressant drugs: A physicochemical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128159.	4.7	7
3	Copper nanoparticle-based sensors for environmental pollutions. , 2022, , 751-774.		0
4	A graphene-printed paper electrode for determination of H ₂ O ₂ in municipal wastewater during the COVID-19 pandemic. New Journal of Chemistry, 2022, 46, 1362-1370.	2.8	7
5	Simultaneous determination of B1, B3, B6 and C vitamins in green leafy vegetables using reverse phase-high performance liquid chromatography. Microchemical Journal, 2022, 176, 107249.	4.5	5
6	Design and development of conductive nanomaterials for electrochemical sensors: a modern approach. Materials Today Chemistry, 2022, 24, 100769.	3.5	22
7	Smartphone-integrated printed-paper sensor designed for on-site determination of dimethoate pesticide in food samples. Food Chemistry, 2022, 383, 132449.	8.2	20
8	Analytical approaches on some selected toxic heavy metals in the environment and their socio-environmental impacts: A meticulous review. Journal of the Indian Chemical Society, 2022, 99, 100545.	2.8	10
9	Experimental and theoretical investigations for selective colorimetric recognition and determination of arginine and histidine in vegetable and fruit samples using bare-AgNPs. Microchemical Journal, 2021, 160, 105597.	4.5	8
10	Colorimetric determination of L-cysteine in milk samples with surface functionalized silver nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118961.	3.9	27
11	Temperature-programmed nitridation of monodispersed VO <i>x</i> nanoparticles into nanocrystalline superconducting oxygen-doped vanadium nitride. New Journal of Chemistry, 2021, 45, 6129-6135.	2.8	3
12	A simple and cost-effective paper-based and colorimetric dual-mode detection of arsenic(<scp>iii</scp>) and lead(<scp>ii</scp>) based on glucose-functionalized gold nanoparticles. RSC Advances, 2021, 11, 20769-20780.	3.6	16
13	Application of silver nanoparticles as a chemical sensor for detection of pesticides and metal ions in environmental samples. , 2021, , 429-452.		4
14	Application of nanoparticles as a chemical sensor for analysis of environmental samples. , 2021, , 257-277.		0
15	Inkjet-printed paper-based electrochemical sensor with gold nano-ink for detection of glucose in blood serum. New Journal of Chemistry, 2021, 45, 8297-8305.	2.8	22
16	Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). Journal of Hazardous Materials, 2021, 414, 125440.	12.4	77
17	Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: A review. Trends in Environmental Analytical Chemistry, 2021, 31, e00136.	10.3	45
18	Molecular interactions between novel synthesized biodegradable ionic liquids with antidepressant drug. Chemical Thermodynamics and Thermal Analysis, 2021, 3-4, 100012.	1.5	7

#	Article	IF	CITATIONS
19	Application of silver nanoparticles as a new alternative antiviral agent for SARS-CoV-2: A Review. Current Nanoscience, 2021, 17, .	1.2	2
20	Development of nanomaterials-fabricated paper-based sensors for the analysis of environmental and biological samples: A Review. Current Nanoscience, 2021, 17, .	1.2	1
21	Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer's drugs: spectroscopic insights. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1-16.	3.5	12
22	Smartphone coupled with paper-based chemical sensor for on-site determination of iron(III) in environmental and biological samples. Analytical and Bioanalytical Chemistry, 2020, 412, 1573-1583.	3.7	47
23	Inclusion complexation of novel synthesis amino acid based ionic liquids with β-cyclodextrin. Journal of Molecular Liquids, 2020, 299, 112204.	4.9	10
24	A low-cost paper-based flexible energy storage device using a conducting polymer nanocomposite. New Journal of Chemistry, 2020, 44, 13446-13457.	2.8	9
25	Novel formation of Au/Ag bimetallic nanoparticles from a mixture of monometallic nanoparticles and their application for the rapid detection of lead in onion samples. New Journal of Chemistry, 2020, 44, 15010-15017.	2.8	14
26	Food safety monitoring of the pesticide phenthoate using a smartphone-assisted paper-based sensor with bimetallic Cu@Ag core–shell nanoparticles. Lab on A Chip, 2020, 20, 3996-4006.	6.0	42
27	Thermodynamic investigation of the interaction between ionic liquid functionalized gold nanoparticles and human serum albumin for selective determination of glutamine. RSC Advances, 2020, 10, 31400-31410.	3.6	9
28	Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer's drugs. RSC Advances, 2020, 10, 38873-38883.	3.6	8
29	Advances in flexible electronics and electrochemical sensors using conducting nanomaterials: A review. Microchemical Journal, 2020, 156, 104944.	4.5	45
30	Exploring spectroscopic insights into molecular recognition of potential anti-Alzheimer's drugs within the hydrophobic pockets of β-cycloamylose. Journal of Molecular Liquids, 2020, 311, 113269.	4.9	4
31	An example of green surfactant systems based on inherently biodegradable IL-derived amphiphilic oximes. Journal of Molecular Liquids, 2020, 305, 112857.	4.9	10
32	CdTe QD-based inhibition and reactivation assay of acetylcholinesterase for the detection of organophosphorus pesticides. RSC Advances, 2020, 10, 24190-24202.	3.6	40
33	Flexible printed paper electrode with silver nano-ink for electrochemical applications. Microchemical Journal, 2020, 155, 104687.	4.5	24
34	L-cysteine modified silver nanoparticles for selective and sensitive colorimetric detection of vitamin B1 in food and water samples. Heliyon, 2020, 6, e03423.	3.2	35
35	Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe. Mikrochimica Acta, 2020, 187, 173.	5.0	46
36	A KBr-impregnated paper substrate as a sample probe for the enhanced ATR-FTIR signal strength of anionic and non-ionic surfactants in an aqueous medium. RSC Advances, 2020, 10, 40428-40441.	3.6	7

#	Article	IF	CITATIONS
37	A direct DRS-FTIR probe for rapid detection and quantification of fluoroquinolone antibiotics in poultry egg-yolk. Food Chemistry, 2019, 270, 459-466.	8.2	32
38	Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchemical Journal, 2019, 150, 104156.	4.5	71
39	Citrate-capped gold nanoparticles as a sensing probe for determination of cetyltrimethylammonium surfactant using FTIR spectroscopy and colorimetry. Analytical and Bioanalytical Chemistry, 2019, 411, 6943-6957.	3.7	26
40	Application of functionalized silver nanoparticles as a biochemical sensor for selective detection of lysozyme protein in milk sample. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 127-133.	3.9	21
41	The direct-writing of low cost paper based flexible electrodes and touch pad devices using silver nano-ink and ZnO nanoparticles. RSC Advances, 2019, 9, 17868-17876.	3.6	9
42	Surface enhanced infra-red spectroscopy with modified silver nanoparticles (AgNPs) for detection of quaternary ammonium cationic surfactants. New Journal of Chemistry, 2019, 43, 8109-8121.	2.8	28
43	A carbon quantum dot–gold nanoparticle system as a probe for the inhibition and reactivation of acetylcholinesterase: detection of pesticides. New Journal of Chemistry, 2019, 43, 6874-6882.	2.8	45
44	Silver nanoparticles for selective detection of phosphorus pesticide containing π-conjugated pyrimidine nitrogen and sulfur moieties through non-covalent interactions. Journal of Molecular Liquids, 2019, 275, 297-303.	4.9	37
45	Analytical approach on surface active agents in the environment and challenges. Trends in Environmental Analytical Chemistry, 2019, 21, e00061.	10.3	30
46	Spectroscopic studies on in vitro molecular interaction of highly fluorescent carbon dots with different serum albumins. Journal of Molecular Liquids, 2018, 255, 279-287.	4.9	24
47	Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-methylimidazolium bromide: A comparative study and potential application in antidepressants drug aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 376-386.	3.9	24
48	Gold nanoprobe for inhibition and reactivation of acetylcholinesterase: An application to detection of organophosphorus pesticides. Sensors and Actuators B: Chemical, 2018, 267, 155-164.	7.8	57
49	Methyl Orange Paired Microextraction and Diffuse Reflectanceâ€Fourier Transform Infrared Spectral Monitoring for Improved Signal Strength of Total Mixed Cationic Surfactants. Journal of Surfactants and Detergents, 2018, 21, 197-208.	2.1	14
50	Sucrose capped gold nanoparticles as a plasmonic chemical sensor based on non-covalent interactions: Application for selective detection of vitamins B1 and B6 in brown and white rice food samples. Food Chemistry, 2018, 250, 14-21.	8.2	42
51	A low-cost screen printed glass electrode with silver nano-ink for electrochemical detection of H ₂ O ₂ . Analytical Methods, 2018, 10, 3248-3255.	2.7	15
52	Experimental and theoretical approaches for the selective detection of thymine in real samples using gold nanoparticles as a biochemical sensor. RSC Advances, 2018, 8, 24328-24337.	3.6	15
53	Host–guest complexation of ionic liquid with α- and β-cyclodextrins: a comparative study by 1H-NMR, 13C-NMR and COSY. New Journal of Chemistry, 2018, 42, 14542-14550.	2.8	11
54	Mn2+ doped-CdTe/ZnS modified fluorescence nanosensor for detection of glucose. Sensors and Actuators B: Chemical, 2017, 245, 196-204.	7.8	37

#	Article	IF	CITATIONS
55	Low-Cost Paper Electrode Fabricated by Direct Writing with Silver Nanoparticle-Based Ink for Detection of Hydrogen Peroxide in Wastewater. Analytical Chemistry, 2017, 89, 776-782.	6.5	52
56	Label-free selective detection of ampicillin drug in human urine samples using silver nanoparticles as a colorimetric sensing probe. New Journal of Chemistry, 2017, 41, 6685-6692.	2.8	56
57	Removal of endrin and dieldrin isomeric pesticides through stereoselective adsorption behavior on the graphene oxide-magnetic nanoparticles. Environmental Science and Pollution Research, 2017, 24, 24980-24988.	5.3	47
58	Onsite-detection of barium and nickel from river, pond and tap water samples using gold nanoparticles as a chemical sensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 630-636.	3.9	34
59	Direct-Writing of Paper Based Conductive Track using Silver Nano-ink for Electroanalytical Application. Electrochimica Acta, 2016, 209, 511-520.	5.2	42
60	Application of silver nanoparticles for a highly selective colorimetric assay of endrin in water and food samples based on stereoselective endo-recognition. RSC Advances, 2016, 6, 29855-29862.	3.6	30
61	Enhancement of plasmonic resonance through an exchange reaction on the surface of silver nanoparticles: application to the highly selective detection of triazophos pesticide in food and vegetable samples. RSC Advances, 2016, 6, 80739-80747.	3.6	24
62	Interaction of bovine serum albumin with cationic monomeric and dimeric surfactants: A comparative study. Journal of Molecular Liquids, 2016, 218, 421-428.	4.9	34
63	Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples. Analytical Methods, 2016, 8, 2088-2096.	2.7	57
64	Gold nanoparticles-based colorimetric determination of cationic surfactants in environmental water samples via both electrostatic and hydrophobic interactions. Mikrochimica Acta, 2016, 183, 827-836.	5.0	28
65	Surfactant-based dispersive liquid–liquid microextraction for the determination of zinc in environmental water samples using flame atomic absorption spectrometry. Analytical Methods, 2016, 8, 5519-5525.	2.7	14
66	Ionic liquid matrix-based dispersive liquid–liquid microextraction for enhanced MALDI–MS analysis of phospholipids in soybean. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1001, 124-130.	2.3	18
67	Gold nanoparticles as a localized surface plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples. Sensors and Actuators B: Chemical, 2015, 220, 1376-1383.	7.8	116
68	Surfactantâ€Assisted Dispersive Liquid–Liquid Microextraction for Sensitive Spectrophotometric Determination of Iron in Food and Water Samples and Comparison with Atomic Absorption Spectrometry. Journal of Surfactants and Detergents, 2015, 18, 1137-1144.	2.1	8
69	Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters. Journal of Physical Chemistry B, 2013, 117, 3806-3817.	2.6	35
70	Dispersive liquid–liquid microextraction for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry. Food Chemistry, 2013, 141, 2263-2268.	8.2	57
71	Activity, stability and kinetic parameters for α-chymotrypsin catalysed reactions in AOT/isooctane reverse micelles with nonionic and zwitterionic mixed surfactants. Journal of Chemical Sciences, 2013, 125, 875-882.	1.5	14
72	Rapid and highly sensitive protein extractionviacobalt oxidenanoparticle-based liquid–liquid microextraction coupled with MALDI mass spectrometry. Analyst, The, 2012, 137, 890-895.	3.5	22

#	Article	IF	CITATIONS
73	Application of platinum nanoparticles as affinity probe and matrix for direct analysis of small biomolecules and microwave digested proteins using matrix-assisted laser desorption/ionization mass spectrometry. Analyst, The, 2011, 136, 2852.	3.5	39
74	Nucleophilic Attack of Salicylhydroxamate Ion at Câ•O and Pâ•O Centers in Cationic Micellar Media. Journal of Physical Chemistry B, 2010, 114, 16759-16765.	2.6	25
75	Multifunctional nanoparticles composite for MALDIâ€MS: Cd ²⁺ â€doped carbon nanotubes with CdS nanoparticles as the matrix, preconcentrating and accelerating probes of microwave enzymatic digestion of peptides and proteins for direct MALDIâ€MS analysis. Journal of Mass Spectrometry, 2010, 45, 1452-1460.	1.6	68
76	Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDIâ€TOF MS. Proteomics, 2009, 9, 2656-2667.	2.2	74
77	Trace level determination of molybdenum in environmental and biological samples using surfactant-mediated liquid–liquid extraction. Journal of Hazardous Materials, 2009, 161, 325-329.	12.4	27
78	Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surfaceâ€assisted laser desorption/ionization timeâ€ofâ€flight and atmospheric pressure matrixâ€assisted laser desorption/ionization ion trap mass spectrometry for rapid analysis of sulfur drugs and biothiols in human urine. Rapid Communications in Mass Spectrometry, 2008, 22, 2863-2872.	1.5	86
79	Ultrasonication followed by singleâ€drop microextraction combined with GC/MS for rapid determination of organochlorine pesticides from fish. Journal of Separation Science, 2008, 31, 380-386.	2.5	45
80	Functionalizedâ€multiwalled carbon nanotubes as a preconcentrating probe for rapid monitoring of cationic dyestuffs in environmental water using APâ€MALDI/MS. Journal of Separation Science, 2008, 31, 3603-3611.	2.5	10
81	Oxidized multiwalled carbon nanotubes for quantitative determination of cationic surfactants in water samples using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Analytica Chimica Acta, 2008, 628, 198-203.	5.4	32
82	Modified Silver Nanoparticle as a Hydrophobic Affinity Probe for Analysis of Peptides and Proteins in Biological Samples by Using Liquidâ~'Liquid Microextraction Coupled to AP-MALDI-Ion Trap and MALDI-TOF Mass Spectrometry. Analytical Chemistry, 2008, 80, 2583-2589.	6.5	93
83	A rapid, sensitive and effective quantitative method for simultaneous determination of cationic surfactant mixtures from river and municipal wastewater by direct combination of singleâ€drop microextraction with APâ€MALDI mass spectrometry. Journal of Mass Spectrometry, 2007, 42, 1637-1644.	1.6	56
84	Rapid determination of caffeine in one drop of beverages and foods using drop-to-drop solvent microextraction with gas chromatography/mass spectrometry. Journal of Chromatography A, 2007, 1170, 9-14.	3.7	89
85	Quantitative bioanalysis of quinine by atmospheric pressure-matrix assisted laser desorption/ionization mass spectrometry combined with dynamic drop-to-drop solvent microextraction. Analytica Chimica Acta, 2007, 605, 153-158.	5.4	38
86	Single drop microextraction as a concentrating probe for rapid screening of low molecular weight drugs from human urine in atmosphericâ€pressure matrixâ€assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 3103-3108.	1.5	36
87	Onâ€Site Determination of Arsenic in Contaminated Water#. Analytical Letters, 2004, 37, 333-344.	1.8	17