Aura R Garrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8633721/publications.pdf

Version: 2024-02-01

331670 361022 2,138 35 21 35 h-index citations g-index papers 37 37 37 3289 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Hamsters Expressing Human Angiotensin-Converting Enzyme 2 Develop Severe Disease following Exposure to SARS-CoV-2. MBio, 2022, 13, e0290621.	4.1	17
2	Junin Virus Activates p38 MAPK and HSP27 Upon Entry. Frontiers in Cellular and Infection Microbiology, 2022, 12, 798978.	3.9	2
3	History and classification of Aigai virus (formerly Crimean–Congo haemorrhagic fever virus genotype) Tj ETQq1	1,0,78431 2.9	4 rgBT /Ove
4	The host inflammatory response contributes to disease severity in Crimean-Congo hemorrhagic fever virus infected mice. PLoS Pathogens, 2022, 18, e1010485.	4.7	12
5	A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. Npj Vaccines, 2021, 6, 31.	6.0	25
6	Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease. Journal of General Virology, $2021,102,$.	2.9	6
7	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
8	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
9	ICTV Virus Taxonomy Profile: Nairoviridae. Journal of General Virology, 2020, 101, 798-799.	2.9	56
10	Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight, 2020, 5, .	5.0	186
11	Animal Models for Crimean-Congo Hemorrhagic Fever Human Disease. Viruses, 2019, 11, 590.	3.3	51
12	GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Science Advances, 2019, 5, eaaw9535.	10.3	56
13	Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathogens, 2019, 15, e1008050.	4.7	32
14	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
15	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
16	The pathogenesis of genetically diverse strains of Crimean-Congo hemorrhagic fever virus in the cynomolgus macaque model. International Journal of Infectious Diseases, 2019, 79, 16.	3.3	0
17	Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice. Journal of Virology, 2018, 92, .	3.4	41
18	Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection. PLoS ONE, 2018, 13, e0191983.	2.5	10

#	Article	IF	CITATIONS
19	Sequence Optimized Real-Time Reverse Transcription Polymerase Chain Reaction Assay for Detection of Crimean-Congo Hemorrhagic Fever Virus. American Journal of Tropical Medicine and Hygiene, 2018, 98, 211-215.	1.4	18
20	Draft Genome Sequences of Eight Crimean-Congo Hemorrhagic Fever Virus Strains. Genome Announcements, 2017, 5 , .	0.8	3
21	Alterations in the host transcriptome in vitro following Rift Valley fever virus infection. Scientific Reports, 2017, 7, 14385.	3.3	17
22	A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Neglected Tropical Diseases, 2017, 11, e0005908.	3.0	76
23	A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antiviral Research, 2016, 135, 31-47.	4.1	91
24	A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus. PLoS ONE, 2015, 10, e0138484.	2.5	15
25	The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Research, 2014, 112, 1-7.	4.1	72
26	Crimean–Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology, 2013, 444, 45-54.	2.4	54
27	IFITM-2 and IFITM-3 but Not IFITM-1 Restrict Rift Valley Fever Virus. Journal of Virology, 2013, 87, 8451-8464.	3.4	109
28	Novel plant-derived recombinant human interferons with broad spectrum antiviral activity. Antiviral Research, 2011, 92, 461-469.	4.1	4
29	Lymphocyte Death in a Mouse Model of Ebola Virus Infection. Journal of Infectious Diseases, 2007, 196, S296-S304.	4.0	79
30	In vivo imaging of cidofovir treatment of cowpox virus infection. Virus Research, 2007, 128, 88-98.	2.2	21
31	Influences of Glycosylation on Antigenicity, Immunogenicity, and Protective Efficacy of Ebola Virus GP DNA Vaccines. Journal of Virology, 2007, 81, 1821-1837.	3.4	114
32	Development of a TaqMan®–Minor Groove Binding Protein Assay for the Detection and Quantification of Crimean-Congo Hemorrhagic Fever Virus. American Journal of Tropical Medicine and Hygiene, 2007, 77, 514-520.	1.4	38
33	Cynomolgus Macaque as an Animal Model for Severe Acute Respiratory Syndrome. PLoS Medicine, 2006, 3, e149.	8.4	98
34	Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine, 2003, 21, 4071-4080.	3.8	119
35	Comparison of the protective efficacy of DNA and baculovirus-derived protein vaccines for EBOLA virus in guinea pigs. Virus Research, 2003, 92, 187-193.	2.2	50