List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8633679/publications.pdf Version: 2024-02-01



IAN RÃONED

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Environmental Income and Rural Livelihoods: A Global-Comparative Analysis. World Development, 2014, 64, S12-S28.                                                                                            | 4.9  | 757       |
| 2  | Effectiveness and synergies of policy instruments for land use governance in tropical regions. Global<br>Environmental Change, 2014, 28, 129-140.                                                           | 7.8  | 330       |
| 3  | The Effectiveness of Payments for Environmental Services. World Development, 2017, 96, 359-374.                                                                                                             | 4.9  | 315       |
| 4  | Mainstreaming Impact Evaluation in Nature Conservation. Conservation Letters, 2016, 9, 58-64.                                                                                                               | 5.7  | 275       |
| 5  | The rotten apples of Brazil's agribusiness. Science, 2020, 369, 246-248.                                                                                                                                    | 12.6 | 244       |
| 6  | Transparency and sustainability in global commodity supply chains. World Development, 2019, 121, 163-177.                                                                                                   | 4.9  | 236       |
| 7  | Direct conservation payments in the Brazilian Amazon: Scope and equity implications. Ecological Economics, 2010, 69, 1272-1282.                                                                             | 5.7  | 194       |
| 8  | Safety Nets, Gap Filling and Forests: A Global-Comparative Perspective. World Development, 2014, 64, S29-S42.                                                                                               | 4.9  | 187       |
| 9  | Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies.<br>Sustainability, 2018, 10, 3190.                                                                              | 3.2  | 185       |
| 10 | Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>24188-24194. | 7.1  | 131       |
| 11 | Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nature Communications, 2021, 12, 2591.                                                                                    | 12.8 | 122       |
| 12 | Linking Forest Tenure Reform, Environmental Compliance, and Incentives: Lessons from REDD+<br>Initiatives in the Brazilian Amazon. World Development, 2014, 55, 53-67.                                      | 4.9  | 112       |
| 13 | The Effectiveness of Forest Conservation Policies and Programs. Annual Review of Resource Economics, 2020, 12, 45-64.                                                                                       | 3.7  | 92        |
| 14 | Spatially-explicit footprints of agricultural commodities: Mapping carbon emissions embodied in<br>Brazil's soy exports. Global Environmental Change, 2020, 62, 102067.                                     | 7.8  | 87        |
| 15 | Recent transformations of land-use and land-cover dynamics across different deforestation frontiers in the Brazilian Amazon. Land Use Policy, 2018, 76, 81-94.                                              | 5.6  | 85        |
| 16 | Payments for Environmental Services: Past Performance and Pending Potentials. Annual Review of Resource Economics, 2020, 12, 209-234.                                                                       | 3.7  | 83        |
| 17 | Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction. Agricultural Systems, 2021, 190, 103074.                                                   | 6.1  | 79        |
| 18 | Paying for avoided deforestation in the Brazilian Amazon: from cost assessment to scheme design.<br>International Forestry Review, 2008, 10, 496-511.                                                       | 0.6  | 77        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ecosystem services, agriculture, and rural poverty in the Eastern Brazilian Amazon: Interrelationships and policy prescriptions. Ecological Economics, 2007, 64, 356-373.                                                         | 5.7  | 75        |
| 20 | Forest law enforcement in the Brazilian Amazon: Costs and income effects. Global Environmental Change, 2014, 29, 294-305.                                                                                                         | 7.8  | 75        |
| 21 | Naming and Shaming for Conservation: Evidence from the Brazilian Amazon. PLoS ONE, 2015, 10, e0136402.                                                                                                                            | 2.5  | 74        |
| 22 | Post-Crackdown Effectiveness of Field-Based Forest Law Enforcement in the Brazilian Amazon. PLoS<br>ONE, 2015, 10, e0121544.                                                                                                      | 2.5  | 72        |
| 23 | Landscape Transformation in Tropical Latin America: Assessing Trends and Policy Implications for REDD+. Forests, 2011, 2, 1-29.                                                                                                   | 2.1  | 64        |
| 24 | FABIO—The Construction of the Food and Agriculture Biomass Input–Output Model. Environmental<br>Science & Technology, 2019, 53, 11302-11312.                                                                                      | 10.0 | 63        |
| 25 | Emerging Evidence on the Effectiveness of Tropical Forest Conservation. PLoS ONE, 2016, 11, e0159152.                                                                                                                             | 2.5  | 62        |
| 26 | Bioenergy, food security and poverty reduction: trade-offs and synergies along the water–energy–food security nexus. Water International, 2015, 40, 772-790.                                                                      | 1.0  | 58        |
| 27 | Quantifying the global cropland footprint of the European Union's non-food bioeconomy.<br>Environmental Research Letters, 2019, 14, 045011.                                                                                       | 5.2  | 58        |
| 28 | Exploring the future of the bioeconomy: An expert-based scoping study examining key enabling<br>technology fields with potential to foster the transition toward a bio-based economy. Technology in<br>Society, 2019, 58, 101118. | 9.4  | 53        |
| 29 | Land use mediated GHC emissions and spillovers from increased consumption of bioplastics.<br>Environmental Research Letters, 2018, 13, 125005.                                                                                    | 5.2  | 49        |
| 30 | Rural Income and Forest Reliance in Highland Guatemala. Environmental Management, 2013, 51,<br>1034-1043.                                                                                                                         | 2.7  | 48        |
| 31 | Focus on leakage and spillovers: informing land-use governance in a tele-coupled world.<br>Environmental Research Letters, 2020, 15, 090202.                                                                                      | 5.2  | 45        |
| 32 | Mixing Carrots and Sticks to Conserve Forests in the Brazilian Amazon: A Spatial Probabilistic<br>Modeling Approach. PLoS ONE, 2015, 10, e0116846.                                                                                | 2.5  | 44        |
| 33 | Sustainability implications of transformation pathways for the bioeconomy. Sustainable Production and Consumption, 2022, 29, 215-227.                                                                                             | 11.0 | 41        |
| 34 | The implementation costs of forest conservation policies in Brazil. Ecological Economics, 2016, 130, 209-220.                                                                                                                     | 5.7  | 40        |
| 35 | A review of global-local-global linkages in economic land-use/cover change models. Environmental<br>Research Letters, 2019, 14, 053003.                                                                                           | 5.2  | 40        |
| 36 | Smallholder Specialization Strategies along the Forest Transition Curve in Southwestern Amazonia.<br>World Development, 2014, 64, S149-S158.                                                                                      | 4.9  | 39        |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Sustainability Performance of National Bio-Economies. Sustainability, 2018, 10, 2705.                                                                                                     | 3.2  | 38        |
| 38 | Land speculation and conservation policy leakage in Brazil. Environmental Research Letters, 2019, 14, 045006.                                                                             | 5.2  | 38        |
| 39 | Forest loss and management in land reform settlements: Implications for REDD governance in the Brazilian Amazon. Environmental Science and Policy, 2011, 14, 188-200.                     | 4.9  | 34        |
| 40 | Why were upscaled incentive programs for forest conservation adopted? Comparing policy choices in Brazil, Ecuador, and Peru. Ecosystem Services, 2015, 16, 243-252.                       | 5.4  | 31        |
| 41 | Bioeconomy futures: Expectation patterns of scientists and practitioners on the sustainability of bioâ€based transformation. Sustainable Development, 2020, 28, 1220-1235.                | 12.5 | 30        |
| 42 | Climatic Benefits From the 2006–2017 Avoided Deforestation in Amazonian Brazil. Frontiers in Forests<br>and Global Change, 2019, 2, .                                                     | 2.3  | 27        |
| 43 | Selection biases and spillovers from collective conservation incentives in the Peruvian Amazon.<br>Environmental Research Letters, 2019, 14, 045004.                                      | 5.2  | 27        |
| 44 | Long-term impacts of bio-based innovation in the chemical sector: A dynamic global perspective.<br>Journal of Cleaner Production, 2020, 272, 122738.                                      | 9.3  | 24        |
| 45 | Forest restoration: Overlooked constraints. Science, 2019, 366, 315-315.                                                                                                                  | 12.6 | 23        |
| 46 | How Do Rural Households Cope with Economic Shocks? Insights from Global Data using Hierarchical<br>Analysis. Journal of Agricultural Economics, 2015, 66, 392-414.                        | 3.5  | 22        |
| 47 | COVIDâ€19 in rural Africa: Food access disruptions, food insecurity and coping strategies in Kenya,<br>Namibia, and Tanzania. Agricultural Economics (United Kingdom), 2022, 53, 719-738. | 3.9  | 19        |
| 48 | Will up-scaled forest conservation incentives in the Peruvian Amazon produce cost-effective and equitable outcomes?. Environmental Conservation, 2016, 43, 407-416.                       | 1.3  | 18        |
| 49 | Energy security, uncertainty and energy resource use options in Ethiopia. International Journal of<br>Energy Sector Management, 2017, 11, 91-117.                                         | 2.3  | 17        |
| 50 | Quo vadis global forest governance? A transdisciplinary delphi study. Environmental Science and<br>Policy, 2021, 123, 131-141.                                                            | 4.9  | 17        |
| 51 | Managing Tropical Forest Ecosystem Services: An Overview of Options. Studies in Ecological Economics, 2013, , 21-46.                                                                      | 0.2  | 17        |
| 52 | Six research priorities to support corporate due-diligence policies. Nature, 2022, 606, 861-863.                                                                                          | 27.8 | 17        |
| 53 | What Drives Intensification of Land Use at Agricultural Frontiers in the Brazilian Amazon? Evidence<br>from a Decision Game. Forests, 2019, 10, 464.                                      | 2.1  | 15        |
| 54 | Exploring criteria for transformative policy capacity in the context of South Africa's biodiversity economy. Policy Sciences, 2021, 54, 209-237.                                          | 2.8  | 14        |

| #  | Article                                                                                                                                                                                          | IF                 | CITATIONS              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|
| 55 | Assessing opportunity costs of conservation: Ingredients for protected area management in the Kakamega Forest, Western Kenya. Forest Policy and Economics, 2009, 11, 459-467.                    | 3.4                | 13                     |
| 56 | A Bayesian network approach to modelling land-use decisions under environmental policy incentives in the Brazilian Amazon. Journal of Land Use Science, 2020, 15, 127-141.                       | 2.2                | 13                     |
| 57 | Impacts of conservation incentives in protected areas: The case of Bolsa Floresta, Brazil. Journal of Environmental Economics and Management, 2022, 111, 102572.                                 | 4.7                | 13                     |
| 58 | REDD+ as a Public Policy Dilemma: Understanding Conflict and Cooperation in the Design of Conservation Incentives. Forests, 2018, 9, 725.                                                        | 2.1                | 12                     |
| 59 | Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy<br>Approach. Forests, 2018, 9, 600.                                                             | 2.1                | 12                     |
| 60 | Evaluating REDD+ at subnational level: Amazon fund impacts in Alta Floresta, Brazil. Forest Policy and Economics, 2020, 116, 102178.                                                             | 3.4                | 12                     |
| 61 | Rainfall or price variability: what determines rangeland management decisions? A<br>simulationâ€optimization approach to South African savannas. Agricultural Economics (United) Tj ETQq1 1 0.75 | 843 <b>1.9</b> rgB | T / <b>Q</b> verlock 1 |
| 62 | The Scope for Reducing Emissions from Forestry and Agriculture in the Brazilian Amazon. Forests, 2012, 3, 546-572.                                                                               | 2.1                | 11                     |
| 63 | The Paraguayan Chaco at a crossroads: drivers of an emerging soybean frontier. Regional<br>Environmental Change, 2021, 21, 1.                                                                    | 2.9                | 11                     |
| 64 | Feasibility of mulching technology as an alternative to slash-and-burn farming in eastern Amazon: A<br>cost–benefit analysis. Renewable Agriculture and Food Systems, 2007, 22, 125-133.         | 1.8                | 10                     |
| 65 | Economic Impacts and Land Use Change from Increasing Demand for Forest Products in the European<br>Bioeconomy: A General Equilibrium Based Sensitivity Analysis. Forests, 2019, 10, 52.          | 2.1                | 10                     |
| 66 | Tourism opportunities drive woodland and wildlife conservation outcomes of community-based conservation in Namibia's Zambezi region. Ecological Economics, 2021, 180, 106863.                    | 5.7                | 9                      |
| 67 | Potential conservation gains from improved protected area management in the Brazilian Amazon.<br>Biological Conservation, 2022, 269, 109526.                                                     | 4.1                | 6                      |
| 68 | Benefits and costs of incentive-based forest conservation in the Peruvian Amazon. Forest Policy and Economics, 2021, 131, 102559.                                                                | 3.4                | 5                      |
| 69 | Sustainable Innovations: A Qualitative Study on Farmers' Perceptions Driving the Diffusion of Beneficial Soil Microbes in Germany and the UK. Sustainability, 2022, 14, 5749.                    | 3.2                | 5                      |
| 70 | Scoping Adaptation Needs for Smallholders in the Brazilian Amazon: A Municipal Level Case Study.<br>Change and Adaptation in Socio-Ecological Systems, 2014, 1, .                                | 1.5                | 1                      |
| 71 | Governance der Bioökonomie im weltweiten Vergleich. , 2020, , 343-359.                                                                                                                           |                    | 0                      |