Danuta Boros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8633261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The HEALTHGRAIN Cereal Diversity Screen: Concept, Results, and Prospects. Journal of Agricultural and Food Chemistry, 2008, 56, 9699-9709.	2.4	218
2	Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9740-9749.	2.4	211
3	Phytochemical and Dietary Fiber Components in Barley Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9767-9776.	2.4	185
4	Phytochemical and Fiber Components in Oat Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9777-9784.	2.4	152
5	Phytochemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9758-9766.	2.4	150
6	Natural Variation in Grain Composition of Wheat and Related Cereals. Journal of Agricultural and Food Chemistry, 2013, 61, 8295-8303.	2.4	136
7	Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry, 2013, 136, 1243-1248.	4.2	99
8	Alkylresorcinols in Wheat Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9722-9725.	2.4	90
9	Environment and Genotype Effects on the Content of Dietary Fiber and Its Components in Wheat in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9353-9361.	2.4	76
10	Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2011, 11, 71-83.	1.4	76
11	Effects of Genotype and Environment on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9372-9383.	2.4	73
12	Composition and End-Use Quality of 150 Wheat Lines Selected for the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9750-9757.	2.4	58
13	Chemical Composition of Natural and Polyphenol-free Apple Pomace and the Effect of This Dietary Ingredient on Intestinal Fermentation and Serum Lipid Parameters in Rats. Journal of Agricultural and Food Chemistry, 2011, 59, 9177-9185.	2.4	58
14	Variability in the chemical composition of triticale grain, flour and bread. Journal of Cereal Science, 2016, 71, 66-72.	1.8	46
15	Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water. Journal of Cereal Science, 2016, 69, 9-16.	1.8	33
16	Relationship between the Contents of Bioactive Components in Grain and the Release Dates of Wheat Lines in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2011, 59, 928-933.	2.4	24
17	The Efficiency of Xylanase in Broiler Chickens Fed with Increasing Dietary Levels of Rye. Animals, 2019, 9, 46.	1.0	21
18	Influence of R genome on the nutritional value of triticale for broiler chicks. Animal Feed Science and Technology, 1999, 76, 219-226.	1.1	16

DANUTA BOROS

#	Article	IF	CITATIONS
19	Triticale-oat bread as a new product rich in bioactive and nutrient components. Journal of Cereal Science, 2018, 82, 146-154.	1.8	15
20	Chick adaptation to diets based on milling fractions of rye varying in arabinoxylans content. Animal Feed Science and Technology, 2002, 101, 135-149.	1.1	12
21	The nutritive value of egg by-products and their potential bactericidal activity:in vitro andin vivo studies. Journal of the Science of Food and Agriculture, 2007, 87, 378-387.	1.7	11
22	TOTAL DIETARY FIBER. , 2009, , 167-176.		3
23	Wartość pokarmowa wybranych mieszanek zbóż jarych z roślinami bobowatymi grubonasiennymi. Biulety Instytutu Hodowli I Aklimatyzacji Roślin, 2020, , 51-62.	ⁿ 0.0	3
24	Effect of Rye Grain Derived from Different Cultivars or Maize Grain Use in the Diet on Ruminal Fermentation Parameters and Nutrient Digestibility in Sheep. Annals of Animal Science, 2021, 21, 959-976.	0.6	2
25	PRELIMINARY STUDY ON QUALITY OF SOME WHEAT LINES SELECTED AS RAW MATERIAL FOR MALTING. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, 20, .	0.1	1
26	Effect ofÂgenotype andÂcontrasting climate conditions onÂphysical andÂchemical characteristics ofÂsoybean (Glycine max L. Merrill). Biuletyn Instytutu Hodowli I Aklimatyzacji RoÅvlin, 2021, , 3-16.	0.0	0
27	Poprawa wartości pokarmowej ziarna pszenicy jarej poprzez siewy mieszanin odmianowych. Biuletyn Instytutu Hodowli I Aklimatyzacji Roślin, 2020, , 37-49. 	0.0	0