
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8633228/publications.pdf Version: 2024-02-01

RILLIRAKED

#	Article	IF	CITATIONS
1	Metabolites from an Antarctic Sponge-Associated Bacterium,Pseudomonas aeruginosa. Journal of Natural Products, 1996, 59, 293-296.	3.0	237
2	Ecology of Antarctic Marine Sponges: An Overview. Integrative and Comparative Biology, 2005, 45, 359-368.	2.0	173
3	Palmerolide A, a Cytotoxic Macrolide from the Antarctic TunicateSynoicumadareanum. Journal of the American Chemical Society, 2006, 128, 5630-5631.	13.7	162
4	Cold-water marine natural products. Natural Product Reports, 2007, 24, 774.	10.3	145
5	Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biology, 2007, 30, 1417-1430.	1.2	94
6	Surface sequestration of chemical feeding deterrents in the Antarctic sponge Latrunculia apicalis as an optimal defense against sea star spongivory. Marine Biology, 2003, 143, 443-449.	1.5	91
7	Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. Journal of Experimental Marine Biology and Ecology, 2006, 329, 55-65.	1.5	90
8	Epigenetic Tailoring for the Production of Anti-Infective Cytosporones from the Marine Fungus Leucostoma persoonii. Marine Drugs, 2012, 10, 762-774.	4.6	89
9	Chemical Investigation of Predator-Deterred Macroalgae from the Antarctic Peninsula. Journal of Natural Products, 2004, 67, 1295-1302.	3.0	84
10	Cold-water marine natural products, 2006 to 2016. Natural Product Reports, 2017, 34, 585-626.	10.3	80
11	Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. Journal of Phycology, 2014, 50, 1-10.	2.3	77
12	A Species Flock Driven by Predation? Secondary Metabolites Support Diversification of Slugs in Antarctica. PLoS ONE, 2013, 8, e80277.	2.5	76
13	Overview of the Chemical Ecology of Benthic Marine Invertebrates along the Western Antarctic Peninsula. Integrative and Comparative Biology, 2010, 50, 967-980.	2.0	72
14	Ecdysteroids from the Antarctic Tunicate <i>Synoicum adareanum</i> . Journal of Natural Products, 2007, 70, 1859-1864.	3.0	66
15	Defenses of polar macroalgae against herbivores and biofoulers. Botanica Marina, 2009, 52, 535-545.	1.2	64
16	Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and) Tj ETQq0 (0 0 ₁₉ BT /C)verlock 10 Tf

17	Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. European Journal of Phycology, 2010, 45, 19-26.	2.0	61
18	Within-thallus variation in chemical and physical defences in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. Journal of Experimental Marine Biology and Ecology, 2005, 322, 1-12.	1.5	60

#	Article	IF	CITATIONS
19	LACK OF DEFENSE OR PHLOROTANNIN INDUCTION BY UV RADIATION OR MESOGRAZERS IN DESMARESTIA ANCEPS AND D. MENZIESII (PHAEOPHYCEAE) 1. Journal of Phycology, 2006, 42, 1174-1183.	2.3	58
20	Screening Mangrove Endophytic Fungi for Antimalarial Natural Products. Marine Drugs, 2013, 11, 5036-5050.	4.6	58
21	Ainigmaptilones, Sesquiterpenes from the Antarctic Gorgonian CoralAinigmaptilon antarcticus. Journal of Natural Products, 2003, 66, 888-890.	3.0	55
22	Shagenes A and B, New Tricyclic Sesquiterpenes Produced by an Undescribed Antarctic Octocoral. Organic Letters, 2014, 16, 2630-2633.	4.6	55
23	Norselic Acids Aâ^'E, Highly Oxidized Anti-infective Steroids that Deter Mesograzer Predation, from the Antarctic Sponge <i>Crella</i> sp Journal of Natural Products, 2009, 72, 1842-1846.	3.0	54
24	Isolation, Structure Elucidation, and Biological Activity of the Steroid Oligoglycosides and Polyhydroxysteroids from the Antarctic Starfish Acodontaster conspicuus. Journal of Natural Products, 1997, 60, 959-966.	3.0	52
25	Characterization of the Microbial Community and Polyketide Biosynthetic Potential in the Palmerolide-Producing Tunicate <i>Synoicum adareanum</i> . Journal of Natural Products, 2008, 71, 1812-1818.	3.0	52
26	An evaluation of sponge-associated amphipods from the Antarctic Peninsula. Antarctic Science, 2009, 21, 579-589.	0.9	52
27	Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia, 2009, 48, 324-334.	1.4	51
28	Site-Specific Variability in the Chemical Diversity of the Antarctic Red Alga Plocamium cartilagineum. Marine Drugs, 2013, 11, 2126-2139.	4.6	49
29	Palmerolide macrolides from the Antarctic tunicate Synoicum adareanum. Bioorganic and Medicinal Chemistry, 2011, 19, 6608-6614.	3.0	48
30	Darwinolide, a New Diterpene Scaffold That Inhibits Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm from the Antarctic Sponge <i>Dendrilla membranosa</i> . Organic Letters, 2016, 18, 2596-2599.	4.6	47
31	Palmadorin chemodiversity from the Antarctic nudibranch Austrodoris kerguelenensis and inhibition of Jak2/STAT5-dependent HEL leukemia cells. Tetrahedron, 2012, 68, 9095-9104.	1.9	46
32	Further Membranolide Diterpenes from the Antarctic SpongeDendrillamembranosa. Journal of Natural Products, 2004, 67, 1172-1174.	3.0	43
33	Reactive oxygen species and the <scp>A</scp> ntarctic macroalgal wound response. Journal of Phycology, 2014, 50, 71-80.	2.3	41
34	Chemical and Ecological Studies of the Antarctic Sponge Dendrilla membranosa. Journal of Natural Products, 1995, 58, 1459-1462.	3.0	40
35	Palatability of the Antarctic rhodophyte Palmaria decipiens (Reinsch) RW Ricker and its endo/epiphyte Elachista antarctica Skottsberg to sympatric amphipods. Journal of Experimental Marine Biology and Ecology, 2011, 396, 202-206.	1.5	40
36	Impacts of acute elevated seawater temperature on the feeding preferences of an Antarctic amphipod toward chemically deterrent macroalgae. Marine Biology, 2015, 162, 425-433.	1.5	39

#	Article	IF	CITATIONS
37	A laboratory study of behavioral interactions of the Antarctic keystone sea star Odontaster validus with three sympatric predatory sea stars. Marine Biology, 2008, 154, 1077-1084.	1.5	35
38	On the stereochemistry of palmerolide A. Tetrahedron Letters, 2007, 48, 8009-8010.	1.4	34
39	Field studies on deterrent properties of phlorotannins in Antarctic brown algae. Botanica Marina, 2009, 52, 547-557.	1.2	34
40	Potential chemical defenses against diatom fouling in Antarctic macroalgae. Botanica Marina, 2005, 48, .	1.2	32
41	CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorganic and Medicinal Chemistry, 2011, 19, 5756-5762.	3.0	31
42	Elucidating a chemical defense mechanism of Antarctic sponges: A computational study. Journal of Molecular Graphics and Modelling, 2017, 71, 104-115.	2.4	30
43	Inhibition of Bacterial Quorum Sensing and Biofilm Formation by Extracts of Neotropical Rainforest Plants. Planta Medica, 2014, 80, 343-350.	1.3	28
44	Chemo-tactile predator avoidance responses of the common Antarctic limpet Nacella concinna. Polar Biology, 2002, 25, 469-473.	1.2	27
45	IMPACTS OF MESOGRAZERS ON EPIPHYTE AND ENDOPHYTE GROWTH ASSOCIATED WITH CHEMICALLY DEFENDED MACROALGE FROM THE WESTERN ANTARCTIC PENINSULA: A MESOCOSM EXPERIMENT ¹ . Journal of Phycology, 2011, 47, 36-41.	2.3	27
46	lsolation and Identification of a Stilbene Derivative from the Antarctic Sponge Kirkpatrickia variolosa. Journal of Natural Products, 1995, 58, 1958-1960.	3.0	25
47	Changes in amphipod densities among macroalgal habitats in day versus night collections along the Western Antarctic Peninsula. Marine Biology, 2011, 158, 1879-1885.	1.5	25
48	Potential chemical defenses of Antarctic sponges against sympatric microorganisms. Polar Biology, 2010, 33, 649-658.	1.2	23
49	Gut content, fatty acid, and stable isotope analyses reveal dietary sources of macroalgal-associated amphipods along the western Antarctic Peninsula. Polar Biology, 2017, 40, 1371-1384.	1.2	22
50	Spongian Diterpenoids Derived from the Antarctic Sponge Dendrilla antarctica Are Potent Inhibitors of the Leishmania Parasite. Journal of Natural Products, 2020, 83, 1553-1562.	3.0	22
51	Palmadorins Aâ^'C, Diterpene Glycerides from the Antarctic Nudibranch <i>Austrodoris kerguelenensis</i> . Journal of Natural Products, 2010, 73, 416-421.	3.0	21
52	Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. Marine Drugs, 2018, 16, 376.	4.6	21
53	Reactive oxygen species as a marine grazing defense: H2O2 and wounded Ascoseira mirabilis both inhibit feeding by an amphipod grazer. Journal of Experimental Marine Biology and Ecology, 2014, 458, 34-38.	1.5	20
54	Marine Terpenoids from Polar Latitudes and Their Potential Applications in Biotechnology. Marine Drugs, 2020, 18, 401.	4.6	20

#	Article	IF	CITATIONS
55	Synthesis of the C3–14 fragment of palmerolide A using a chiral pool based strategy. Tetrahedron, 2010, 66, 1557-1562.	1.9	19
56	Synthesis, Stereochemical Analysis, and Derivatization of Myricanol Provide New Probes That Promote Autophagic Tau Clearance. ACS Chemical Biology, 2015, 10, 1099-1109.	3.4	18
57	A comprehensive evaluation of the potential chemical defenses of antarctic ascidians against sympatric fouling microorganisms. Marine Biology, 2011, 158, 2661-2671.	1.5	17
58	A new carnivorous shallow-water sponge from McMurdo Sound, Antarctica (Porifera,) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	0 622 Td (Poe

59	Amphipods exclude filamentous algae from the Western Antarctic Peninsula benthos: experimental evidence. Polar Biology, 2012, 35, 171-177.	1.2	17
60	Keikipukalides, Furanocembrane Diterpenes from the Antarctic Deep Sea Octocoral Plumarella delicatissima. Journal of Natural Products, 2018, 81, 117-123.	3.0	17
61	Conditioned media and organic elicitors underpin the production of potent antiplasmodial metabolites by endophytic fungi from Cameroonian medicinal plants. Parasitology Research, 2018, 117, 2473-2485.	1.6	17
62	Anverenes B–E, New Polyhalogenated Monoterpenes from the Antarctic Red Alga Plocamium cartilagineum. Marine Drugs, 2019, 17, 230.	4.6	16
63	Palatability of living and dead detached Antarctic macroalgae to consumers. Antarctic Science, 2012, 24, 589-590.	0.9	15
64	Bioactivity of Spongian Diterpenoid Scaffolds from the Antarctic Sponge Dendrilla antarctica. Marine Drugs, 2020, 18, 327.	4.6	15
65	Chemical defences in embryos and juveniles of two common Antarctic sea stars and an isopod. Antarctic Science, 2003, 15, 339-344.	0.9	14
66	Gut contents and stable isotope analyses of the Antarctic fish, <i>Notothenia coriiceps</i> (Richardson), from two macroalgal communities. Antarctic Science, 2011, 23, 107-116.	0.9	14
67	Uncovering the Core Microbiome and Distribution of Palmerolide in Synoicum adareanum Across the Anvers Island Archipelago, Antarctica. Marine Drugs, 2020, 18, 298.	4.6	12
68	Friomaramide, a Highly Modified Linear Hexapeptide from an Antarctic Sponge, Inhibits Plasmodium falciparum Liver-Stage Development. Journal of Natural Products, 2019, 82, 2354-2358.	3.0	11
69	Impacts of gastropods on epiphytic microalgae on the brown macroalga Himantothallus grandifolius. Antarctic Science, 2019, 31, 89-97.	0.9	11
70	Every Rule Has an Exception: a Cheater in the Community-Wide Mutualism in Antarctic Seaweed Forests. Integrative and Comparative Biology, 2020, 60, 1358-1368.	2.0	10
71	Hidden Diversity in an Antarctic Algal Forest: Metabolomic Profiling Linked to Patterns of Genetic Diversification in the Antarctic Red Alga Plocamium sp Marine Drugs, 2021, 19, 607.	4.6	10
72	Bathyptilones: Terpenoids from an Antarctic Sea Pen, Anthoptilum grandiflorum (Verrill, 1879). Marine Drugs, 2019, 17, 513.	4.6	9

#	Article	IF	CITATIONS
73	Accumulation of vanadium, manganese, and nickel in Antarctic tunicates. Polar Biology, 2011, 34, 587-590.	1.2	8
74	Deep-Sea Coral Garden Invertebrates and Their Associated Fungi Are Genetic Resources for Chronic Disease Drug Discovery. Marine Drugs, 2021, 19, 390.	4.6	8
75	The biochemical composition, energy content, and chemical antifeedant defenses of the common Antarctic Peninsular sea stars Granaster nutrix and Neosmilaster georgianus. Polar Biology, 2006, 29, 615-623.	1.2	7
76	Effects of Macroalgal Chemical Extracts on Spore Behavior of the Antarctic Epiphyte <i>Elachista antarctica</i> Phaeophyceae. Journal of Phycology, 2012, 48, 1403-1410.	2.3	7
77	A potent antimalarial trichothecene from hyphomycete species. Tetrahedron Letters, 2014, 55, 3989-3991.	1.4	7
78	Specialized antiplasmodial secondary metabolites from Aspergillus niger 58, an endophytic fungus from Terminalia catappa. Journal of Ethnopharmacology, 2021, 269, 113672.	4.1	7
79	Discovery of an Antarctic Ascidian-Associated Uncultivated <i>Verrucomicrobia</i> with Antimelanoma Palmerolide Biosynthetic Potential. MSphere, 2021, 6, e0075921.	2.9	7
80	Bioinformatic and Mechanistic Analysis of the Palmerolide PKS-NRPS Biosynthetic Pathway From the Microbiome of an Antarctic Ascidian. Frontiers in Chemistry, 2021, 9, 802574.	3.6	7
81	Gastropod assemblages associated with <i>Himantothallus grandifolius</i> , <i>Sarcopeltis antarctica</i> and other subtidal macroalgae. Antarctic Science, 0, , 1-10.	0.9	7
82	Introduction to the Symposium: Antarctic Marine Biology. American Zoologist, 2001, 41, 1-2.	0.7	6
83	Identification of Communal Oviposition Pheromones from the Black Fly Simulium vittatum. PLoS ONE, 2015, 10, e0118904.	2.5	6
84	Miniaturized Cultivation of Microbiota for Antimalarial Drug Discovery. Medicinal Research Reviews, 2016, 36, 144-168.	10.5	6
85	Tuaimenal A, a Meroterpene from the Irish Deep-Sea Soft Coral <i>Duva florida</i> , Displays Inhibition of the SARS-CoV-2 3CLpro Enzyme. Journal of Natural Products, 2022, 85, 1315-1323.	3.0	6
86	Synthesis of Pteroenone and Its Stereoisomers, a Defensive Metabolite of the Abducted Antarctic Pteropod <i>Clione antarctica</i> . Helvetica Chimica Acta, 2010, 93, 1933-1944.	1.6	5
87	Australindolones, New Aminopyrimidine Substituted Indolone Alkaloids from an Antarctic Tunicate Synoicum sp Marine Drugs, 2022, 20, 196.	4.6	5
88	Not Drug-like, but Like Drugs: Cnidaria Natural Products. Marine Drugs, 2022, 20, 42.	4.6	5
89	From Antarctica to cancer research: a novel human DNA topoisomerase 1B inhibitor from Antarctic sponge <i>Dendrilla antarctica</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1404-1410.	5.2	5
90	One Antarctic slug to confuse them all: the underestimated diversity of Doris kerguelenensis. Invertebrate Systematics, 2022, 36, 419.	1.3	5

#	Article	IF	CITATIONS
91	Algicidal activity and potential antifouling defenses in macroalgae from the western Antarctic Peninsula including probable synergistic effects of multiple compounds. Botanica Marina, 2012, 55, 311-315.	1.2	4
92	Chemical Mediation of Antarctic Macroalga-Grazer Interactions. , 2020, , 339-363.		4
93	Tongalides, Halogenated Butenolides from an Antarctic <i>Delisea</i> sp. Rhodophyte. Journal of Natural Products, 2022, 85, 1886-1891.	3.0	3
94	Chromatographic editing enhances natural product discovery. Journal of Pharmaceutical and Biomedical Analysis, 2019, 176, 112831.	2.8	2
95	Draft Genome Sequence of <i>Verrucosispora</i> sp. Strain CWR15, Isolated from a Gulf of Mexico Sponge. Microbiology Resource Announcements, 2020, 9, .	0.6	2
96	Who Cares More about Chemical Defenses — the Macroalgal Producer or Its Main Grazer?. Journal of Chemical Ecology, 2022, 48, 416-430.	1.8	2
97	Screening Marine Microbial Libraries. , 2015, , 105-134.		1
98	Introduction to the Symposium: New Frontiers in Antarctic Marine Biology. Integrative and Comparative Biology, 2020, 60, 1355-1357.	2.0	1
99	Phototactic responses of Elachista antarctica (Phaeophyceae) spores of different ages across aÂbroad irradiance range using new motion analysis software. Botanica Marina, 2012, 55, .	1.2	0
100	Marine Natural Products with Bioactivity Against Neglected Tropical Diseases. Topics in Heterocyclic Chemistry, 2021, , 209-251.	0.2	0