
KateÅMa PacultovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8632914/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the Cu content and Ce activating effect on catalytic performance of Cu-Mg-Al and Ce/Cu-Mg-Al oxides in ammonia selective catalytic oxidation. Applied Surface Science, 2022, 573, 151540.	6.1	10
2	An investigation on the N2O decomposition activity of Mn Co1â^'Co2O4 nanorods prepared by the thermal decomposition of their oxalate precursors. Journal of Industrial and Engineering Chemistry, 2021, 93, 279-289.	5.8	14
3	Reaction mechanism of NO direct decomposition over K-promoted Co-Mn-Al mixed oxides – DRIFTS, TPD and transient state studies. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 257-266.	5.3	9
4	Oxygen effect in NO direct decomposition over K/Co-Mg-Mn-Al mixed oxide catalyst–Temperature programmed desorption study. Molecular Catalysis, 2021, 510, 111695.	2.0	4
5	Catalytic Oxidation of Ammonia over Cerium-Modified Copper Aluminium Zinc Mixed Oxides. Materials, 2021, 14, 6581.	2.9	6
6	Nanosheets-nanorods transformation during the non-isothermal decomposition of gadolinium acetate. Ceramics International, 2020, 46, 25467-25477.	4.8	4
7	Direct Decomposition of NO over Co-Mn-Al Mixed Oxides: Effect of Ce and/or K Promoters. Catalysts, 2020, 10, 808.	3.5	4
8	Magnesium Effect in K/Co-Mg-Mn-Al Mixed Oxide Catalyst for Direct NO Decomposition. Catalysts, 2020, 10, 931.	3.5	9
9	Cobalt Based Catalysts on Alkali-Activated Zeolite Foams for N2O Decomposition. Catalysts, 2020, 10, 1398.	3.5	9
10	K-Modified Co–Mn–Al Mixed Oxide—Effect of Calcination Temperature on N2O Conversion in the Presence of H2O and NOx. Catalysts, 2020, 10, 1134.	3.5	11
11	Effect of support on the catalytic activity of Co3O4-Cs deposited on open-cell ceramic foams for N2O decomposition. Materials Research Bulletin, 2020, 129, 110892.	5.2	18
12	Cu-Mg-Fe-O-(Ce) Complex Oxides as Catalysts of Selective Catalytic Oxidation of Ammonia to Dinitrogen (NH3-SCO). Catalysts, 2020, 10, 153.	3.5	14
13	Does the structure of CuZn hydroxycarbonate precursors affect the intrinsic hydrogenolysis activity of CuZn catalysts?. Catalysis Science and Technology, 2020, 10, 3303-3314.	4.1	10
14	Precipitated K-Promoted Co–Mn–Al Mixed Oxides for Direct NO Decomposition: Preparation and Properties. Catalysts, 2019, 9, 592.	3.5	10
15	Co-Mn-Al Mixed Oxides Promoted by K for Direct NO Decomposition: Effect of Preparation Parameters. Catalysts, 2019, 9, 593.	3.5	18
16	Catalytic decomposition of N ₂ O over Cu–Al–O _x mixed metal oxides. RSC Advances, 2019, 9, 3979-3986.	3.6	16
17	Cobalt mixed oxides deposited on the SiC open-cell foams for nitrous oxide decomposition. Applied Catalysis B: Environmental, 2019, 255, 117745.	20.2	30
18	Must the Best Laboratory Prepared Catalyst Also Be the Best in an Operational Application?. Catalysts, 2019, 9, 160.	3.5	7

Kateřina PacultovÃi

#	Article	IF	CITATIONS
19	CuZn Catalysts Superior to Adkins Catalysts for Dimethyl Adipate Hydrogenolysis. ChemCatChem, 2019, 11, 2169-2178.	3.7	20
20	On the stability of alkali metal promoters in Co mixed oxides during direct NO catalytic decomposition. Molecular Catalysis, 2017, 428, 33-40.	2.0	22
21	Cobalt Oxide Catalysts on Commercial Supports for N ₂ O Decomposition. Chemical Engineering and Technology, 2017, 40, 981-990.	1.5	12
22	Cobalt oxide catalysts supported on CeO2–TiO2 for ethanol oxidation and N2O decomposition. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 121-139.	1.7	7
23	Effect of preparation method on catalytic properties of Co-Mn-Al mixed oxides for N2O decomposition. Journal of Molecular Catalysis A, 2016, 425, 237-247.	4.8	31
24	K-Doped Co–Mn–Al Mixed Oxide Catalyst for N ₂ O Abatement from Nitric Acid Plant Waste Gases: Pilot Plant Studies. Industrial & Engineering Chemistry Research, 2016, 55, 7076-7084.	3.7	14
25	Advantage of the single pellet string reactor for testing real-size industrial pellets of potassium-doped CoMnAl catalyst forÂthe decompositionÂof N2O. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 651-662.	1.7	10
26	Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4. Catalysis Today, 2015, 257, 2-10.	4.4	22
27	Supported Co–Mn–Al mixed oxides as catalysts for N2O decomposition. Comptes Rendus Chimie, 2015, 18, 1114-1122.	0.5	12
28	Effect of hydrothermal treatment on properties of Ni–Al layered double hydroxides and related mixed oxides. Journal of Solid State Chemistry, 2009, 182, 27-36.	2.9	92
29	N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chemical Papers, 2009, 63, .	2.2	12
30	Catalytic reduction of nitrous oxide with carbon monoxide over calcined Co–Mn–Al hydrotalcite. Catalysis Today, 2008, 137, 385-389.	4.4	22
31	Application of Calcined Layered Double Hydroxides as Catalysts for Abatement of N2O Emissions. Collection of Czechoslovak Chemical Communications, 2008, 73, 1045-1060.	1.0	4
32	Effect of Mn/Al ratio in Co–Mn–Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O. Catalysis Today, 2007, 119, 233-238.	4.4	73
33	Structure–activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors. Journal of Molecular Catalysis A, 2006, 248, 210-219.	4.8	52
34	Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds. Applied Catalysis B: Environmental, 2005, 60, 289-297.	20.2	75