
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/86328/publications.pdf Version: 2024-02-01

FANC HU

#	Article	IF	CITATIONS
1	Photosensitizers with Aggregationâ€Induced Emission: Materials and Biomedical Applications. Advanced Materials, 2018, 30, e1801350.	11.1	611
2	Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chemical Science, 2015, 6, 5824-5830.	3.7	406
3	A Highly Efficient and Photostable Photosensitizer with Nearâ€Infrared Aggregationâ€Induced Emission for Imageâ€Guided Photodynamic Anticancer Therapy. Advanced Materials, 2017, 29, 1700548.	11.1	373
4	Pd(ii)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chemical Science, 2013, 4, 4187.	3.7	280
5	Targeted Bioimaging and Photodynamic Therapy of Cancer Cells with an Activatable Red Fluorescent Bioprobe. Analytical Chemistry, 2014, 86, 7987-7995.	3.2	262
6	Metal–Organicâ€Frameworkâ€Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy. Advanced Materials, 2018, 30, e1706831.	11.1	242
7	Chemiluminescence-Guided Cancer Therapy Using a Chemiexcited Photosensitizer. CheM, 2017, 3, 991-1007.	5.8	232
8	Polymerization-Enhanced Photosensitization. CheM, 2018, 4, 1937-1951.	5.8	227
9	Pd(ii)-catalyzed alkylation of unactivated C(sp3)–H bonds: efficient synthesis of optically active unnatural Ĩ±-amino acids. Chemical Science, 2013, 4, 3906.	3.7	202
10	Fluorescence Turn-On Chemosensor for Highly Selective and Sensitive Detection and Bioimaging of Al ³⁺ in Living Cells Based on Ion-Induced Aggregation. Analytical Chemistry, 2015, 87, 1470-1474.	3.2	188
11	Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal–Organic Framework. ACS Nano, 2019, 13, 6879-6890.	7.3	179
12	A Lightâ€Up Probe with Aggregationâ€Induced Emission for Realâ€Time Bioâ€orthogonal Tumor Labeling and Imageâ€Guided Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 10182-10186.	7.2	160
13	Hybrid Nanospheres to Overcome Hypoxia and Intrinsic Oxidative Resistance for Enhanced Photodynamic Therapy. ACS Nano, 2020, 14, 2183-2190.	7.3	151
14	Identification of Bacteria in Water by a Fluorescent Array. Angewandte Chemie - International Edition, 2014, 53, 13734-13739.	7.2	149
15	Organelle-specific bioprobes based on fluorogens with aggregation-induced emission (AIE) characteristics. Organic and Biomolecular Chemistry, 2016, 14, 9931-9944.	1.5	126
16	High performance photosensitizers with aggregation-induced emission for image-guided photodynamic anticancer therapy. Materials Horizons, 2017, 4, 1110-1114.	6.4	122
17	Metal–Organic Framework as a Simple and General Inert Nanocarrier for Photosensitizers to Implement Activatable Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1707519.	7.8	115
18	Visualization and Inâ€Situ Ablation of Intracellular Bacterial Pathogens through Metabolic Labeling. Angewandte Chemie - International Edition, 2020, 59, 9288-9292.	7.2	104

#	Article	IF	CITATIONS
19	Urinary Exosomal MicroRNA Profiling in Incipient Type 2 Diabetic Kidney Disease. Journal of Diabetes Research, 2017, 2017, 1-10.	1.0	101
20	Precise Molecular Engineering of Photosensitizers with Aggregationâ€Induced Emission over 800 nm for Photodynamic Therapy. Advanced Functional Materials, 2019, 29, 1901791.	7.8	100
21	AlEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation. Science Advances, 2020, 6, eabb2712.	4.7	100
22	An AlEgenâ€Peptide Conjugate as a Phototheranostic Agent for Phagosomeâ€Entrapped Bacteria. Angewandte Chemie - International Edition, 2019, 58, 16229-16235.	7.2	94
23	Multicolor monitoring of cellular organelles by single wavelength excitation to visualize the mitophagy process. Chemical Science, 2018, 9, 2756-2761.	3.7	92
24	Tetraphenylethylene Conjugated with a Specific Peptide as a Fluorescence Turnâ€On Bioprobe for the Highly Specific Detection and Tracing of Tumor Markers in Live Cancer Cells. Chemistry - A European Journal, 2014, 20, 158-164.	1.7	91
25	Bioorthogonal Coordination Polymer Nanoparticles with Aggregationâ€Induced Emission for Deep Tumorâ€Penetrating Radio―and Radiodynamic Therapy. Advanced Materials, 2021, 33, e2007888.	11.1	89
26	Manipulation of the Aggregation and Deaggregation of Tetraphenylethylene and Silole Fluorophores by Amphiphiles: Emission Modulation and Sensing Applications. Langmuir, 2015, 31, 4593-4604.	1.6	84
27	A highly selective fluorescence turn-on detection of hydrogen peroxide and d-glucose based on the aggregation/deaggregation of a modified tetraphenylethylene. Tetrahedron Letters, 2014, 55, 1471-1474.	0.7	79
28	Detection of Bacterial Alkaline Phosphatase Activity by Enzymatic In Situ Self-Assembly of the AlEgen-Peptide Conjugate. Analytical Chemistry, 2020, 92, 5185-5190.	3.2	74
29	Smart activatable and traceable dual-prodrug for image-guided combination photodynamic and chemo-therapy. Biomaterials, 2017, 144, 53-59.	5.7	73
30	Highly Solidâ€State Emissive Pyridiniumâ€Substituted Tetraphenylethylene Salts: Emission Colorâ€Tuning with Counter Anions and Application for Optical Waveguides. Small, 2015, 11, 1335-1344.	5.2	68
31	Emissive nanoparticles from pyridinium-substituted tetraphenylethylene salts: imaging and selective cytotoxicity towards cancer cells in vitro and in vivo by varying counter anions. Chemical Science, 2016, 7, 7013-7019.	3.7	65
32	ONOO [–] and ClO [–] Responsive Organic Nanoparticles for Specific in Vivo Image-Guided Photodynamic Bacterial Ablation. Chemistry of Materials, 2018, 30, 3867-3873.	3.2	64
33	Combating bacterial infection by in situ self-assembly of AlEgen-peptide conjugate. Biomaterials, 2020, 244, 119972.	5.7	60
34	Bright AlEgen–Protein Hybrid Nanocomposite for Deep and Highâ€Resolution In Vivo Twoâ€Photon Brain Imaging. Advanced Functional Materials, 2019, 29, 1902717.	7.8	56
35	AlEgen bioconjugates for specific detection of disease-related protein biomarkers. Materials Chemistry Frontiers, 2019, 3, 12-24.	3.2	55
36	Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Materials Chemistry Frontiers, 2020, 4, 3074-3085.	3.2	55

#	Article	IF	CITATIONS
37	High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2â€ [–] cells. Biochemical and Biophysical Research Communications, 2018, 498, 38-44.	1.0	52
38	A Lightâ€Up Probe with Aggregationâ€Induced Emission for Realâ€Time Bioâ€orthogonal Tumor Labeling and Imageâ€Guided Photodynamic Therapy. Angewandte Chemie, 2018, 130, 10339-10343.	1.6	52
39	Biomimetic Nanocomposites Cloaked with Bioorthogonally Labeled Glioblastoma Cell Membrane for Targeted Multimodal Imaging of Brain Tumors. Advanced Functional Materials, 2020, 30, 2004346.	7.8	52
40	A fluorescent turn-on low dose detection of gamma-radiation based on aggregation-induced emission. Chemical Communications, 2015, 51, 3892-3895.	2.2	51
41	One-step <i>in vivo</i> metabolic labeling as a theranostic approach for overcoming drug-resistant bacterial infections. Materials Horizons, 2020, 7, 1138-1143.	6.4	49
42	Extracellular Vesicles from Albumin-Induced Tubular Epithelial Cells Promote the M1 Macrophage Phenotype by Targeting Klotho. Molecular Therapy, 2019, 27, 1452-1466.	3.7	47
43	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€Induced Photooxidation. Angewandte Chemie - International Edition, 2019, 58, 3062-3066.	7.2	45
44	Self-Assembled Nanostructures Based on Activatable Red Fluorescent Dye for Site-Specific Protein Probing and Conformational Transition Detection. Analytical Chemistry, 2016, 88, 6374-6381.	3.2	43
45	Dual-Responsive Metabolic Precursor and Light-Up AIEgen for Cancer Cell Bio-orthogonal Labeling and Precise Ablation. Analytical Chemistry, 2018, 90, 6718-6724.	3.2	39
46	Specific Light-Up Probe with Aggregation-Induced Emission for Facile Detection of Chymase. Analytical Chemistry, 2016, 88, 9111-9117.	3.2	37
47	Specific Targeting, Imaging, and Ablation of Tumor-Associated Macrophages by Theranostic Mannose–AlEgen Conjugates. Analytical Chemistry, 2019, 91, 6836-6843.	3.2	35
48	Bacteriumâ€Templated Polymer for Selfâ€Selective Ablation of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2020, 30, 2001338.	7.8	35
49	Long noncoding RNA NEAT1 is involved in the protective effect of Klotho on renal tubular epithelial cells in diabetic kidney disease through the ERK1/2 signaling pathway. Experimental and Molecular Medicine, 2020, 52, 266-280.	3.2	35
50	Early Growth Response 1 (Egr1) Is a Transcriptional Activator of NOX4 in Oxidative Stress of Diabetic Kidney Disease. Journal of Diabetes Research, 2018, 2018, 1-10.	1.0	34
51	Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. Nanoscale Advances, 2020, 2, 2859-2869.	2.2	34
52	Visualizing Photodynamic Therapy in Transgenic Zebrafish Using Organic Nanoparticles with Aggregation-Induced Emission. Nano-Micro Letters, 2018, 10, 61.	14.4	33
53	Bioinspired Peptide for Imaging Hg ²⁺ Distribution in Living Cells and Zebrafish Based on Coordination-Mediated Supramolecular Assembling. Analytical Chemistry, 2018, 90, 9708-9715.	3.2	33
54	Simultaneous Increase in Brightness and Singlet Oxygen Generation of an Organic Photosensitizer by Nanocrystallization. Small, 2018, 14, e1803325.	5.2	31

#	Article	IF	CITATIONS
55	Organic Nanoparticles with Aggregationâ€Induced Emission for Bone Marrow Stromal Cell Tracking in a Rat PTI Model. Small, 2016, 12, 6576-6585.	5.2	29
56	Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life Sciences, 2020, 261, 118347.	2.0	27
57	Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells. Biochemical and Biophysical Research Communications, 2017, 487, 216-222.	1.0	24
58	An AlEgenâ€Peptide Conjugate as a Phototheranostic Agent for Phagosomeâ€Entrapped Bacteria. Angewandte Chemie, 2019, 131, 16375-16381.	1.6	21
59	Bio-orthogonal click reaction-enabled highly specific in situ cellularization of tissue engineering scaffolds. Biomaterials, 2020, 230, 119615.	5.7	21
60	Rapid, sensitive, and in-solution screening of peptide probes for targeted imaging of live cancer cells based on peptide recognition-induced emission. Chemical Communications, 2017, 53, 11091-11094.	2.2	18
61	Immobilization of AIEgens into metalâ€organic frameworks: Ligand design, emission behavior, and applications. Journal of Polymer Science Part A, 2017, 55, 1809-1817.	2.5	17
62	Geniposide Combined With Notoginsenoside R1 Attenuates Inflammation and Apoptosis in Atherosclerosis via the AMPK/mTOR/Nrf2 Signaling Pathway. Frontiers in Pharmacology, 2021, 12, 687394.	1.6	16
63	Visualize Embryogenesis and Cell Fate Using Fluorescent Probes with Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2019, 11, 3737-3744.	4.0	14
64	Organic Mitoprobes based on Fluorogens with Aggregationâ€Induced Emission. Israel Journal of Chemistry, 2018, 58, 860-873.	1.0	13
65	Visualization and Inâ€Situ Ablation of Intracellular Bacterial Pathogens through Metabolic Labeling. Angewandte Chemie, 2020, 132, 9374-9378.	1.6	8
66	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€lnduced Photooxidation. Angewandte Chemie, 2019, 131, 3094-3098.	1.6	7
67	Antibacterial Therapy: Metal–Organicâ€Frameworkâ€Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy (Adv. Mater. 18/2018). Advanced Materials, 2018, 30, 1870124.	11.1	5
68	Temperature-activated PRP–cryogel for long-term osteogenesis of adipose-derived stem cells to promote bone repair. Materials Chemistry Frontiers, 2021, 5, 396-405.	3.2	4
69	Photodynamic Therapy: Bacteriumâ€Templated Polymer for Selfâ€Selective Ablation of Multidrugâ€Resistant Bacteria (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070206.	7.8	2