## Paul Bowen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8632011/publications.pdf Version: 2024-02-01



DALL ROWEN

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Aggregation and Charging of Colloidal Silica Particles:Â Effect of Particle Size. Langmuir, 2005, 21,<br>5761-5769.                                                                                                         | 1.6  | 352       |
| 2  | Effect of particle size on LiMnPO4 cathodes. Journal of Power Sources, 2007, 174, 949-953.                                                                                                                                  | 4.0  | 325       |
| 3  | Yodel: A Yield Stress Model for Suspensions. Journal of the American Ceramic Society, 2006, 89, 1244-1256.                                                                                                                  | 1.9  | 285       |
| 4  | Design and function of novel superplasticizers for more durable high performance concrete (superplast project). Cement and Concrete Research, 2008, 38, 1197-1209.                                                          | 4.6  | 205       |
| 5  | Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under<br>solar simulated light: Influence of the isoelectric point. Applied Catalysis B: Environmental, 2006, 63,<br>76-84.    | 10.8 | 203       |
| 6  | Degradation of Aluminum Nitride Powder in an Aqueous Environmet. Journal of the American Ceramic<br>Society, 1990, 73, 724-728.                                                                                             | 1.9  | 202       |
| 7  | : A force field database for cementitious materials including validations, applications and opportunities. Cement and Concrete Research, 2017, 102, 68-89.                                                                  | 4.6  | 186       |
| 8  | Adsorption of superplasticizer admixtures on alkali-activated slag pastes. Cement and Concrete Research, 2009, 39, 670-677.                                                                                                 | 4.6  | 161       |
| 9  | From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides. Powder Technology, 2002, 128, 248-255.                                                                            | 2.1  | 155       |
| 10 | Precipitation of Self-Organized Copper Oxalate Polycrystalline Particles in the Presence of<br>Hydroxypropylmethylcellulose (HPMC): Control of Morphology. Journal of Colloid and Interface<br>Science, 2000, 226, 189-198. | 5.0  | 138       |
| 11 | Particle Size Distribution Measurement from Millimeters to Nanometers and from Rods to Platelets.<br>Journal of Dispersion Science and Technology, 2002, 23, 631-662.                                                       | 1.3  | 138       |
| 12 | The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate. Journal of the American Chemical Society, 2020, 142, 11060-11071.                                                                            | 6.6  | 107       |
| 13 | Transparent polycrystalline alumina using spark plasma sintering: Effect of Mg, Y and La doping.<br>Journal of the European Ceramic Society, 2010, 30, 1335-1343.                                                           | 2.8  | 101       |
| 14 | Yield Stress of Multimodal Powder Suspensions: An Extension of the YODEL (Yield Stress mODEL).<br>Journal of the American Ceramic Society, 2007, 90, 1038-1044.                                                             | 1.9  | 100       |
| 15 | Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology, 2005, 16, 1311-1316.                                                                                                     | 1.3  | 93        |
| 16 | Inactivation of E. coli mediated by high surface area CuO accelerated by light irradiation >360nm.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 105-111.                                          | 2.0  | 86        |
| 17 | Electrostatic repulsion between particles in cement suspensions: Domain of validity of linearized<br>Poisson–Boltzmann equation for nonideal electrolytes. Cement and Concrete Research, 2003, 33,<br>781-791.              | 4.6  | 84        |
| 18 | Properties of lanthanum doped BaTiO3 produced from nanopowders. Ceramics International, 2010, 36, 1817-1824.                                                                                                                | 2.3  | 84        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Colloidal processing and sintering of nanosized transition aluminas. Powder Technology, 2005, 157, 100-107.                                                                                                                      | 2.1 | 83        |
| 20 | An atomistic building block description of C-S-H - Towards a realistic C-S-H model. Cement and Concrete Research, 2018, 107, 221-235.                                                                                            | 4.6 | 78        |
| 21 | Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environmental Science: Nano, 2014, 1, 214.                                                                               | 2.2 | 75        |
| 22 | Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution. Journal of the European Ceramic Society, 2010, 30, 591-598.                                                                          | 2.8 | 71        |
| 23 | Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment.<br>Cement and Concrete Research, 2011, 41, 1330-1338.                                                                          | 4.6 | 69        |
| 24 | Use of Seeds to Control Precipitation of Calcium Carbonate and Determination of Seed Nature.<br>Langmuir, 2005, 21, 100-108.                                                                                                     | 1.6 | 64        |
| 25 | Growth modification of seeded calcite using carboxylic acids: Atomistic simulations. Journal of Colloid and Interface Science, 2010, 346, 226-231.                                                                               | 5.0 | 63        |
| 26 | Photocatalytic Storing of O2as H2O2Mediated by High Surface Area CuO. Evidence for a<br>Reductiveâ~'Oxidative Interfacial Mechanism. Langmuir, 2005, 21, 8554-8559.                                                              | 1.6 | 59        |
| 27 | Innovative High-Surface-Area CuO Pretreated Cotton Effective in Bacterial Inactivation under Visible<br>Light. ACS Applied Materials & Interfaces, 2010, 2, 2547-2552.                                                           | 4.0 | 57        |
| 28 | Synergistic Effect of Fluorinated and N Doped TiO2 Nanoparticles Leading to Different<br>Microstructure and Enhanced Photocatalytic Bacterial Inactivation. Nanomaterials, 2017, 7, 391.                                         | 1.9 | 51        |
| 29 | Precipitation of Nanostructured Copper Oxalate:Â Substructure and Growth Mechanism. Journal of Physical Chemistry B, 2006, 110, 17763-17771.                                                                                     | 1.2 | 50        |
| 30 | Growth and Self-assembly of Nanostructured CoC2O4·2H2O Particles. Journal of Physical Chemistry<br>B, 2004, 108, 13128-13136.                                                                                                    | 1.2 | 49        |
| 31 | Effect of Mixing and Other Operating Parameters in Solâ~'Gel Processes. Industrial & Engineering<br>Chemistry Research, 2008, 47, 7202-7210.                                                                                     | 1.8 | 49        |
| 32 | Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina. Advanced<br>Functional Materials, 2012, 22, 2303-2309.                                                                                    | 7.8 | 49        |
| 33 | Understanding of the factors slowing down metakaolin reaction in limestone calcined clay cement (LC3) at late ages. Cement and Concrete Research, 2021, 146, 106477.                                                             | 4.6 | 49        |
| 34 | Particle Size Distribution Measurement and Assessment of Agglomeration of Commercial Nanosized<br>Ceramic Particles. Journal of Dispersion Science and Technology, 2002, 23, 619-630.                                            | 1.3 | 46        |
| 35 | The influence of concentration on the formation of BaTiO3 by direct reaction of TiCl4 with Ba(OH)2 in aqueous solution. Journal of the European Ceramic Society, 2003, 23, 1383-1390.                                            | 2.8 | 44        |
| 36 | Hamaker 2: A Toolkit for the Calculation of Particle Interactions and Suspension Stability and its<br>Application to Mullite Synthesis by Colloidal Methods. Journal of Dispersion Science and Technology,<br>2011, 32, 470-479. | 1.3 | 43        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thermodynamic-Kinetic Precipitation Modeling. A Case Study: The Amorphous Calcium Carbonate (ACC)<br>Precipitation Pathway Unravelled. Crystal Growth and Design, 2017, 17, 2006-2015.                                       | 1.4 | 42        |
| 38 | Diffuse-reflectance Fourier-transform infrared spectroscopic studies of the stability of aluminum nitride powder in an aqueous environment. Analytical Chemistry, 1989, 61, 2399-2402.                                       | 3.2 | 41        |
| 39 | Freeze granulation: Powder processing for transparent alumina applications. Journal of the European Ceramic Society, 2012, 32, 2899-2908.                                                                                    | 2.8 | 41        |
| 40 | New morphology of calcium oxalate trihydrate precipitated in a segmented flow tubular reactor.<br>Journal of Materials Science Letters, 2000, 19, 749-750.                                                                   | 0.5 | 40        |
| 41 | Formation and Drying of Colloidal Crystals Using Nanosized Silica Particles. Langmuir, 2006, 22, 2249-2257.                                                                                                                  | 1.6 | 39        |
| 42 | Atomistic simulation of the adsorption of calcium and hydroxyl ions onto portlandite surfaces — towards crystal growth mechanisms. Cement and Concrete Research, 2016, 81, 16-23.                                            | 4.6 | 37        |
| 43 | High-quality nickel manganese oxalate powders synthesized in a new segmented flow tubular reactor.<br>Solid State Ionics, 2004, 171, 135-140.                                                                                | 1.3 | 36        |
| 44 | Oxygen vacancy diffusion in alumina: New atomistic simulation methods applied to an old problem.<br>Acta Materialia, 2009, 57, 4765-4772.                                                                                    | 3.8 | 36        |
| 45 | Particle size distribution measurement of anisotropic—particles cylinders and platelets—practical examples. Powder Technology, 2002, 128, 256-261.                                                                           | 2.1 | 33        |
| 46 | Growth Modification of Seeded Calcite by Carboxylic Acid Oligomers and Polymers: Toward an<br>Understanding of Complex Growth Mechanisms. Crystal Growth and Design, 2010, 10, 3956-3963.                                    | 1.4 | 32        |
| 47 | A thermodynamic solution model for calcium carbonate: Towards an understanding of<br>multi-equilibria precipitation pathways. Journal of Colloid and Interface Science, 2009, 340, 218-224.                                  | 5.0 | 31        |
| 48 | Fuerzas de repulsión de aditivos superplastificantes en sistemas de escoria granulada de horno alto<br>en medios alcalinos, desde medidas de AFM a propiedades reológicas. Materiales De Construccion,<br>2012, 62, 489-513. | 0.2 | 31        |
| 49 | Interaction of biologically relevant ions and organic molecules with titanium oxide (rutile) surfaces:<br>A review on molecular dynamics studies. Colloids and Surfaces B: Biointerfaces, 2018, 161, 563-577.                | 2.5 | 30        |
| 50 | Atomistic Simulation of Yâ€Đoped αâ€Alumina Interfaces. Journal of the American Ceramic Society, 2008, 91,<br>3643-3651.                                                                                                     | 1.9 | 29        |
| 51 | Atomistic Modeling Study of Surface Segregation in Nd:YAG. Journal of the American Ceramic Society, 2006, 89, 3812-3816.                                                                                                     | 1.9 | 28        |
| 52 | Precipitation of Nanosized and Nanostructured Powders: Process Intensification and Scaleâ€Out Using<br>a Segmented Flow Tubular Reactor (SFTR). Chemical Engineering and Technology, 2011, 34, 344-352.                      | 0.9 | 28        |
| 53 | Contribution of Aggregation to the Growth Mechanism of Seeded Calcium Carbonate Precipitation in the Presence of Polyacrylic Acid. Journal of Physical Chemistry B, 2010, 114, 12058-12067.                                  | 1.2 | 27        |
| 54 | Influence of <scp><scp>Y</scp> </scp> and <scp><scp>La</scp> Additions on Grain Growth and the Grainâ€Boundary Character Distribution of Alumina. Journal of the American Ceramic Society, 2014, 97, 622-630.</scp>          | 1.9 | 27        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis of porous and nanostructured particles of CuO via a copper oxalate route. Powder Technology, 2011, 208, 467-471.                                                                                                         | 2.1 | 25        |
| 56 | Physicochemical Characterization of Nebulized Superparamagnetic Iron Oxide Nanoparticles (SPIONs).<br>Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 43-51.                                                    | 0.7 | 25        |
| 57 | Spark Plasma Sintering of Nano-Crystalline Ceramics. Key Engineering Materials, 2004, 264-268, 2297-2300.                                                                                                                          | 0.4 | 21        |
| 58 | Modification of titania nanoparticles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. Journal of Materials Research, 2013, 28, 354-361.                                     | 1.2 | 21        |
| 59 | Adsorption Free Energy of Single Amino Acids at the Rutile (110)/Water Interface Studied by Well-Tempered Metadynamics. Journal of Physical Chemistry C, 2018, 122, 11355-11363.                                                   | 1.5 | 21        |
| 60 | Additive-Assisted Aqueous Synthesis of BaTiO <sub>3</sub> Nanopowders. Crystal Growth and Design, 2010, 10, 3996-4004.                                                                                                             | 1.4 | 20        |
| 61 | Surface and Mirror Twin Grain Boundary Segregation in Nd:YAG: An Atomistic Simulation Study.<br>Journal of the American Ceramic Society, 2008, 91, 2698-2705.                                                                      | 1.9 | 19        |
| 62 | Continuous Production of Tailored Silver Nanoparticles by Polyol Synthesis and Reaction Yield<br>Measured by X-ray Absorption Spectroscopy: Toward a Growth Mechanism. Journal of Physical<br>Chemistry C, 2014, 118, 11093-11103. | 1.5 | 19        |
| 63 | Calcination and morphological evolution of cubic copper oxalate particles. Journal of Materials<br>Science Letters, 2000, 19, 1073-1075.                                                                                           | 0.5 | 18        |
| 64 | Atomistic modeling of dopant segregation in α-alumina ceramics: Coverage dependent energy of segregation and nominal dopant solubility. Journal of the European Ceramic Society, 2011, 31, 2839-2852.                              | 2.8 | 18        |
| 65 | Atomistic Simulations of Silicate Species Interaction with Portlandite Surfaces. Journal of Physical Chemistry C, 2016, 120, 22407-22413.                                                                                          | 1.5 | 18        |
| 66 | A comparative study of simulated body fluids in the presence of proteins. Acta Biomaterialia, 2017, 53, 506-514.                                                                                                                   | 4.1 | 18        |
| 67 | Rapid evaluation of bioactive Ti-based surfaces using an in vitro titration method. Nature<br>Communications, 2019, 10, 2062.                                                                                                      | 5.8 | 18        |
| 68 | Cathode-supported micro-tubular SOFCs based on Nd1.95NiO4+δ: Fabrication and characterisation of dip-coated electrolyte layers. Solid State Ionics, 2009, 180, 805-811.                                                            | 1.3 | 17        |
| 69 | Theoretical Assessment of Nd:YAG Ceramic Laser Performance by Microstructural and Optical<br>Modeling. Journal of the American Ceramic Society, 2010, 93, 814-820.                                                                 | 1.9 | 17        |
| 70 | Atomistic Modeling of Effect of Mg on Oxygen Vacancy Diffusion in αâ€Alumina. Journal of the American<br>Ceramic Society, 2014, 97, 2596-2601.                                                                                     | 1.9 | 17        |
| 71 | Plasma-Sprayed-Yttria Layers for Corrosion Resistance. Journal of the American Ceramic Society, 1992, 75, 1005-1007.                                                                                                               | 1.9 | 16        |
| 72 | Control of morphology and nanostructure of copper and cobalt oxalates: Effect of complexing ions, polymeric additives and molecular weight. Nanoscale, 2010, 2, 2470.                                                              | 2.8 | 15        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Development of a processing route for carbon allotrope-based TiC porous nanocomposites. Journal of the European Ceramic Society, 2017, 37, 3899-3908.                                                                          | 2.8 | 15        |
| 74 | Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular<br>Reactor (SFTR). Molecules, 2015, 20, 10566-10581.                                                                         | 1.7 | 14        |
| 75 | Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. Journal of Nanobiotechnology, 2017, 15, 19.                                                                   | 4.2 | 13        |
| 76 | Atomistic modeling of the effect of codoping on the atomistic structure of interfaces in α-alumina.<br>Journal of the European Ceramic Society, 2012, 32, 2935-2948.                                                           | 2.8 | 12        |
| 77 | How colloid–colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions. Journal of Colloid and Interface Science, 2015, 458, 241-246.                        | 5.0 | 12        |
| 78 | Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip<br>Casting Using Excimer Laser Ablated Polycarbonate Molds. ACS Applied Materials & Interfaces,<br>2015, 7, 24458-24469.     | 4.0 | 12        |
| 79 | Kinetics and Mechanism of Metal Nanoparticle Growth <i>via</i> Optical Extinction Spectroscopy and<br>Computational Modeling: The Curious Case of Colloidal Gold. ACS Nano, 2019, 13, 11510-11521.                             | 7.3 | 12        |
| 80 | Impact of small amounts of swelling clays on the physical properties of debris-flow-like granular<br>materials. Implications for the study of alpine debris flow. Earth Surface Processes and Landforms,<br>2007, 32, 698-710. | 1.2 | 11        |
| 81 | Aqueous solubility of Y, Ba and Cu oxalates in the system [Y(OH)3, Ba(OH)2,<br>Cu(OH)2]-H2C2O4-[HNO3/NaOH]-H2O. Journal of Crystal Growth, 1994, 135, 135-144.                                                                 | 0.7 | 10        |
| 82 | A thermodynamic model for the precipitation of nanostructured copper oxalates. Journal of Crystal<br>Growth, 2006, 289, 278-285.                                                                                               | 0.7 | 10        |
| 83 | Spark Plasma Sintering of Ceramics: From Modeling to Practice. Ceramics, 2020, 3, 476-493.                                                                                                                                     | 1.0 | 10        |
| 84 | An approach to improve the accuracy of sub-micron particle size distribution measurement using the<br>Horiba CAPA-700. Powder Technology, 1993, 74, 67-71.                                                                     | 2.1 | 9         |
| 85 | Toward Knowledgeâ€Based Grainâ€Boundary Engineering of Transparent Alumina Combining Advanced<br><scp>TEM</scp> and Atomistic Modeling. Journal of the American Ceramic Society, 2015, 98, 1959-1964.                          | 1.9 | 9         |
| 86 | Synthesis and Sintering of ZnO Nanopowders. Technologies, 2017, 5, 28.                                                                                                                                                         | 3.0 | 9         |
| 87 | Aqueous Synthesis of Mixed Yttriumâ^'Barium Oxalates. Chemistry of Materials, 1999, 11, 712-718.                                                                                                                               | 3.2 | 8         |
| 88 | Pro-oxidant effects of nano-TiO <sub>2</sub> on Chlamydomonas reinhardtii during short-term<br>exposure. RSC Advances, 2016, 6, 115271-115283.                                                                                 | 1.7 | 8         |
| 89 | Grain boundary complexion and transparent polycrystalline alumina from an atomistic simulation perspective. Current Opinion in Solid State and Materials Science, 2016, 20, 278-285.                                           | 5.6 | 8         |
| 90 | Molecular dynamic simulations of cementitious systems using a newly developed force field suite ERICA FF. Cement and Concrete Research, 2022, 154, 106712.                                                                     | 4.6 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Colloidal Processing and Yield Stress Modeling Towards Dry Pressed Green Bodies for Transparent<br>Polycrystalline Alumina. Advanced Engineering Materials, 2014, 16, 774-784.                                                                                                                  | 1.6 | 7         |
| 92  | Comparison of apparent activation energies for densification of alumina powders by pulsed electric<br>current sintering (spark plasma sintering) and conventional sintering—toward applications for<br>transparent polycrystalline alumina. Journal of Materials Research, 2017, 32, 3309-3318. | 1.2 | 7         |
| 93  | Accurate submicron particle size measurement of alumina and quartz powders using a cuvette photocentrifuge. Powder Technology, 1994, 81, 235-240.                                                                                                                                               | 2.1 | 6         |
| 94  | Colloidal Processing of Nanoceramic Powders for Porous Ceramic Film Applications. Key Engineering<br>Materials, 2002, 206-213, 1977-1980.                                                                                                                                                       | 0.4 | 6         |
| 95  | A discussion on the paper "Role of porosity on the stiffness and stability of (001) surface of the nanogranular C–S–H gel― Cement and Concrete Research, 2017, 102, 227-230.                                                                                                                    | 4.6 | 6         |
| 96  | Segregation of anion (Clâ^') impurities at transparent polycrystalline α-alumina interfaces. Journal of the European Ceramic Society, 2014, 34, 3037-3045.                                                                                                                                      | 2.8 | 4         |
| 97  | Predicting the yield stress of paraffin-wax suspensions. Powder Technology, 2016, 291, 1-6.                                                                                                                                                                                                     | 2.1 | 4         |
| 98  | Fabrication and Characterisation of Cathode Support-tubes for Micro-tubular SOFC Application. ECS Transactions, 2009, 25, 2597-2606.                                                                                                                                                            | 0.3 | 2         |
| 99  | Synthesis of Si3N4 Powder by Thermal Decomposition of SI(NH)2. Materials Research Society Symposia Proceedings, 1992, 287, 227.                                                                                                                                                                 | 0.1 | 1         |
| 100 | New approach to low thermal conductivity of thermal barrier protection with improved mechanical integrity. Ceramics International, 2016, 42, 6817-6824.                                                                                                                                         | 2.3 | 1         |
| 101 | Interactions of Tris with rutile surfaces and consequences for in vitro bioactivity testing. Open<br>Ceramics, 2021, 7, 100173.                                                                                                                                                                 | 1.0 | 0         |