## Kosuke Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8632000/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | DUX4 is a multifunctional factor priming human embryonic genome activation. IScience, 2022, 25, 104137.                                                                                                                   | 4.1  | 20        |
| 2  | Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.                                                             | 12.8 | 11        |
| 3  | Embryonic LTR retrotransposons supply promoter modules to somatic tissues. Genome Research, 2021, 31, 1983-1993.                                                                                                          | 5.5  | 7         |
| 4  | Use of Cap Analysis Gene Expression to detect human papillomavirus promoter activity patterns at<br>different disease stages. Scientific Reports, 2020, 10, 17991.                                                        | 3.3  | 1         |
| 5  | RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions. Nature Communications, 2020, 11, 1018.                                                                         | 12.8 | 98        |
| 6  | Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>24242-24251.               | 7.1  | 215       |
| 7  | Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4969-4974.   | 7.1  | 78        |
| 8  | An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature<br>Biotechnology, 2017, 35, 872-878.                                                                                              | 17.5 | 456       |
| 9  | Single-Nucleotide Resolution Mapping of Hepatitis B Virus Promoters in Infected Human Livers and<br>Hepatocellular Carcinoma. Journal of Virology, 2016, 90, 10811-10822.                                                 | 3.4  | 27        |
| 10 | Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress.<br>Carcinogenesis, 2016, 37, 39-48.                                                                                     | 2.8  | 15        |
| 11 | Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming. Cell Cycle, 2015, 14, 1148-1155.                                          | 2.6  | 14        |
| 12 | Characterization of Novel Transcripts of Human Papillomavirus Type 16 Using Cap Analysis Gene<br>Expression Technology. Journal of Virology, 2015, 89, 2448-2452.                                                         | 3.4  | 6         |
| 13 | STAP cells are derived from ES cells. Nature, 2015, 525, E4-E5.                                                                                                                                                           | 27.8 | 8         |
| 14 | CAGE profiling of ncRNAs in hepatocellular carcinoma reveals widespread activation of retroviral LTR promoters in virus-induced tumors. Genome Research, 2015, 25, 1812-1824.                                             | 5.5  | 49        |
| 15 | Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nature Genetics, 2014, 46, 558-566.                                                     | 21.4 | 271       |
| 16 | Evolutionary, Physicochemical, and Functional Mechanisms of Protein Homooligomerization.<br>Progress in Molecular Biology and Translational Science, 2013, 117, 3-24.                                                     | 1.7  | 34        |
| 17 | Cancer Missense Mutations Alter Binding Properties of Proteins and Their Interaction Networks. PLoS ONE, 2013, 8, e66273.                                                                                                 | 2.5  | 102       |
| 18 | Mutations that reduce its specific DNA binding inhibit high NaCl-induced nuclear localization of the osmoprotective transcription factor NFAT5. American Journal of Physiology - Cell Physiology, 2012, 303, C1061-C1069. | 4.6  | 10        |

Коѕике Наѕнімото

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Largeâ€scale mapping of human protein interactome using structural complexes. EMBO Reports, 2012, 13, 266-271.                                                                                                                                  | 4.5 | 43        |
| 20 | Oncogenic potential is related to activating effect of cancer single and double somatic mutations in receptor tyrosine kinases. Human Mutation, 2012, 33, 1566-1575.                                                                            | 2.5 | 26        |
| 21 | Phosphorylation in Protein-Protein Binding: Effect on Stability and Function. Structure, 2011, 19, 1807-1815.                                                                                                                                   | 3.3 | 246       |
| 22 | Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization.<br>Physical Biology, 2011, 8, 035007.                                                                                                        | 1.8 | 94        |
| 23 | Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining<br>different oligomeric states. Proceedings of the National Academy of Sciences of the United States of<br>America, 2010, 107, 20352-20357. | 7.1 | 160       |
| 24 | Functional States of Homooligomers: Insights from the Evolution of Glycosyltransferases. Journal of Molecular Biology, 2010, 399, 196-206.                                                                                                      | 4.2 | 39        |
| 25 | KEGG GLYCAN for Integrated Analysis of Pathways, Genes, and Glycan Structures. , 2010, , 197-210.                                                                                                                                               |     | 0         |
| 26 | Comprehensive analysis of glycosyltransferases in eukaryotic genomes for structural and functional characterization of glycans. Carbohydrate Research, 2009, 344, 881-887.                                                                      | 2.3 | 37        |
| 27 | Mining significant tree patterns in carbohydrate sugar chains. Bioinformatics, 2008, 24, i167-i173.                                                                                                                                             | 4.1 | 33        |
| 28 | A new efficient probabilistic model for mining labeled ordered trees applied to glycobiology. ACM<br>Transactions on Knowledge Discovery From Data, 2008, 2, 1-30.                                                                              | 3.5 | 10        |
| 29 | The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes.<br>Journal of Lipid Research, 2008, 49, 183-191.                                                                                            | 4.2 | 150       |
| 30 | KEGG GLYCAN for Integrated Analysis of Pathways, Genes, and Structures. , 2008, , 441-444.                                                                                                                                                      |     | 3         |
| 31 | AN IMPROVED SCORING SCHEME FOR PREDICTING GLYCAN STRUCTURES FROM GENE EXPRESSION DATA. , 2007, , .                                                                                                                                              |     | 18        |
| 32 | KEGG as a glycome informatics resource. Glycobiology, 2006, 16, 63R-70R.                                                                                                                                                                        | 2.5 | 279       |
| 33 | The repertoire of desaturases for unsaturated fatty acid synthesis in 397 genomes. Genome<br>Informatics, 2006, 17, 173-83.                                                                                                                     | 0.4 | 9         |
| 34 | Prediction of glycan structures from gene expression data based on glycosyltransferase reactions.<br>Bioinformatics, 2005, 21, 3976-3982.                                                                                                       | 4.1 | 78        |
| 35 | A global representation of the carbohydrate structures: a tool for the analysis of glycan. Genome Informatics, 2005, 16, 214-22.                                                                                                                | 0.4 | 7         |
| 36 | Extraction of species-specific glycan substructures. Genome Informatics, 2004, 15, 69-81.                                                                                                                                                       | 0.4 | 5         |