
Sabine Baumgartner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8631933/publications.pdf Version: 2024-02-01

SARINE RALIMCARTNER

#	Article	IF	CITATIONS
1	The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresenius' Journal of Analytical Chemistry, 2001, 371, 285-299.	1.5	270
2	Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Industrial Crops and Products, 2007, 26, 270-277.	2.5	183
3	Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Analytical and Bioanalytical Chemistry, 2009, 395, 69-81.	1.9	170
4	Precautionary allergen labelling: perspectives from key stakeholder groups. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1039-1051.	2.7	126
5	Development of Qualitative and Semiquantitative Immunoassay-Based Rapid Strip Tests for the Detection of T-2 Toxin in Wheat and Oat. Journal of Agricultural and Food Chemistry, 2008, 56, 2589-2594.	2.4	118
6	Current Perspectives and Recommendations for the Development of Mass Spectrometry Methods for the Determination of Allergens in Foods. Journal of AOAC INTERNATIONAL, 2011, 94, 1026-1033.	0.7	103
7	Structure of fructans in roots and leaf tissues of Lolium perenne. New Phytologist, 2001, 150, 83-95.	3.5	86
8	Information provision for allergic consumers - where are we going with food allergen labelling?. Allergy: European Journal of Allergy and Clinical Immunology, 2004, 59, 1262-1268.	2.7	86
9	Characterisation of the high-molecular weight fructan isolated from garlic (Allium sativum L.). Carbohydrate Research, 2000, 328, 177-183.	1.1	83
10	A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Talanta, 2010, 81, 630-636.	2.9	81
11	Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry, 2019, 411, 1905-1913.	1.9	73
12	Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Research International, 2018, 106, 271-279.	2.9	63
13	Sandwich Immunoassays for the Determination of Peanut and Hazelnut Traces in Foods. Journal of Agricultural and Food Chemistry, 2005, 53, 3321-3327.	2.4	62
14	Selection of possible marker peptides for the detection of major ruminant milk proteins in food by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 399, 1105-1115.	1.9	43
15	Assessing hazelnut allergens by protein- and DNA-based approaches: LC-MS/MS, ELISA and real-time PCR. Analytical and Bioanalytical Chemistry, 2014, 406, 2581-2590.	1.9	43
16	Effectiveness of natural and synthetic blocking reagents and their application for detecting food allergens in enzyme-linked immunosorbent assays. Analytical and Bioanalytical Chemistry, 2009, 394, 539-548.	1.9	39
17	A rapid fluorescence polarization immunoassay for the determination of T-2 and HT-2 toxins in wheat. Analytical and Bioanalytical Chemistry, 2011, 401, 2561-2571.	1.9	37
18	Development of a sandwich ELISA-type system for the detection and quantification of hazelnut in model chocolates. Food Chemistry, 2015, 173, 257-265.	4.2	32

SABINE BAUMGARTNER

#	Article	IF	CITATIONS
19	Validation of Two Commercial Lateral Flow Devices for the Detection of Peanut Proteins in Cookies: Interlaboratory Study. Journal of AOAC INTERNATIONAL, 2006, 89, 462-468.	0.7	27
20	Detection of a microbial source tracking marker by isothermal helicase-dependent amplification and a nucleic acid lateral-flow strip test. Scientific Reports, 2019, 9, 393.	1.6	27
21	Detection of hidden hazelnut protein in food by IgY-based indirect competitive enzyme-immunoassay. Analytica Chimica Acta, 2004, 520, 223-228.	2.6	26
22	Marker peptide selection for the determination of hazelnut by LC–MS/MS and occurrence in other nuts. Analytical and Bioanalytical Chemistry, 2012, 402, 2607-2615.	1.9	26
23	Towards the development of a dipstick immunoassay for the detection of trace amounts of egg proteins in food. European Food Research and Technology, 2002, 214, 168-170.	1.6	25
24	Rapid Screening Electrochemical Methods for Aflatoxin B1and Typeâ€A Trichothecenes: A Preliminary Study. Analytical Letters, 2007, 40, 1333-1346.	1.0	25
25	Immunoanalytical detection of allergenic proteins in food. Analytical and Bioanalytical Chemistry, 2004, 378, 63-65.	1.9	24
26	A critical review of the specifications and performance of antibody and DNA-based methods for detection and quantification of allergens in foods. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 507-547.	1.1	20
27	Effects of different extraction buffers on peanut protein detectability and lateral flow device (LFD) performance. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1-11.	1.1	18
28	Integrating Allergen Analysis Within a Risk Assessment Framework: Approaches to Development of Targeted Mass Spectrometry Methods for Allergen Detection and Quantification in the iFAAM Project. Journal of AOAC INTERNATIONAL, 2018, 101, 83-90.	0.7	17
29	Development of soybeans with low P34 allergen protein concentration for reduced allergenicity of soy foods. Journal of the Science of Food and Agriculture, 2017, 97, 1010-1017.	1.7	14
30	Comparison of monoclonal antibody performance characteristics for the detection of two representatives of A- and B-trichothecenes: T-2 toxin and deoxynivalenol. World Mycotoxin Journal, 2010, 3, 233-238.	0.8	12
31	Accumulation of fructans following oxygen deficiency stress in related plant species with different flooding tolerances. New Phytologist, 1997, 136, 137-144.	3.5	12
32	Cross-reactivity of commercial and non-commercial deoxynivalenol-antibodies to emerging trichothecenes and common deoxynivalenol-derivatives. World Mycotoxin Journal, 2019, 12, 45-53.	0.8	10
33	Purification of exo- and endoinulinase from crude inulinase extract for the analysis of fructans. International Journal of Biological Macromolecules, 1995, 17, 247-250.	3.6	7
34	Detecting allergens in foods. , 2007, , 228-250.		6
35	Differences in usability of rabbit IgG and chicken IgY after clean-up and impact on gold labelling properties. Journal of Immunological Methods, 2009, 350, 79-88.	0.6	6

36 Detecting proteins with allergenic potential. , 2004, , 292-322.

#	Article	IF	CITATIONS
37	European Survey for Hidden Allergens in Food: A Case Study with Peanut and Hazelnut. ACS Symposium Series, 2008, , 370-381.	0.5	2
38	A bioinformatics approach to the development of immunoassays for specified risk material in canned meat products. Analytical and Bioanalytical Chemistry, 2009, 394, 1845-1851.	1.9	2
39	The use of lateral flow devices to detect food allergens. , 2006, , 175-181.		2
40	Development of enzyme-immunoassays based on egg yolk antibodies for the detection of mycotoxins. Mycotoxin Research, 2001, 17, 202-205.	1.3	1
41	Purification of peanut proteins for further use in affinity chromatography and as immunogens. Journal of Separation Science, 2003, 26, 1284-1286.	1.3	1