Andrew D Southam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8631856/publications.pdf

Version: 2024-02-01

840776 1058476 1,242 14 11 14 citations h-index g-index papers 15 15 15 2286 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Valproic acid disables the Nrf2 anti-oxidant response in acute myeloid leukaemia cells enhancing reactive oxygen species-mediated killing. British Journal of Cancer, 2022, 126, 275-286.	6.4	6
2	Characterization of Monophasic Solvent-Based Tissue Extractions for the Detection of Polar Metabolites and Lipids Applying Ultrahigh-Performance Liquid Chromatography–Mass Spectrometry Clinical Metabolic Phenotyping Assays. Journal of Proteome Research, 2021, 20, 831-840.	3.7	20
3	Combined bezafibrate, medroxyprogesterone acetate and valproic acid treatment inhibits osteosarcoma cell growth without adversely affecting normal mesenchymal stem cells. Bioscience Reports, 2021, 41, .	2.4	5
4	Assessment of human plasma and urine sample preparation for reproducible and high-throughput UHPLC-MS clinical metabolic phenotyping. Analyst, The, 2020, 145, 6511-6523.	3.5	28
5	Multiple metabolic pathways are predictive of ricin intoxication in a rat model. Metabolomics, 2019, 15, 102.	3.0	8
6	A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics. Nature Protocols, 2017, 12, 310-328.	12.0	121
7	Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques. Scientific Reports, 2017, 7, 2649.	3.3	28
8	Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics, 2016, 12, 146.	3.0	92
9	Drug Redeployment to Kill Leukemia and Lymphoma Cells by Disrupting SCD1-Mediated Synthesis of Monounsaturated Fatty Acids. Cancer Research, 2015, 75, 2530-2540.	0.9	48
10	Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by direct-infusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 2014, 10, 1050-1058.	3.0	29
11	Metabolomics Reveals Target and Off-Target Toxicities of a Model Organophosphate Pesticide to Roach (Rutilus rutilus): Implications for Biomonitoring. Environmental Science &	10.0	68
12	A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. Journal of the American Society for Mass Spectrometry, 2009, 20, 1087-1095.	2.8	65
13	High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 2008, 372, 204-212.	2.4	551
14	Dynamic Range and Mass Accuracy of Wide-Scan Direct Infusion Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabolomics Increased by the Spectral Stitching Method. Analytical Chemistry, 2007, 79, 4595-4602.	6. 5	170