Zong-Liang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8631499/publications.pdf

Version: 2024-02-01

198 papers 19,828 citations

62 h-index

18482

134 g-index

214 all docs

214 docs citations

times ranked

214

14689 citing authors

#	Article	IF	Citations
1	The Community Climate System Model Version 4. Journal of Climate, 2011, 24, 4973-4991.	3.2	2,428
2	The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research, 2011, 116, .	3.3	1,626
3	The Common Land Model. Bulletin of the American Meteorological Society, 2003, 84, 1013-1024.	3.3	1,058
4	Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, $2011, 3, \ldots$	3.8	666
5	Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of Geophysical Research, 2008, 113 , .	3.3	649
6	The Land Surface Climatology of the Community Land Model Coupled to the NCAR Community Climate Model*. Journal of Climate, 2002, 15, 3123-3149.	3.2	583
7	The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. Journal of Geophysical Research, $2011, 116, \ldots$	3.3	475
8	Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. Journal of Geophysical Research, 2007, 112 , .	3.3	440
9	Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale. Journal of Hydrometeorology, 2006, 7, 937-952.	1.9	389
10	Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 2011, 3, n/a-n/a.	3.8	367
11	The Project for Intercomparison of Land-surface Parameterization Schemes. Bulletin of the American Meteorological Society, 1993, 74, 1335-1349.	3.3	365
12	A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. Journal of Geophysical Research, 2005, 110 , .	3.3	358
13	Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. Journal of Environmental Management, 2005, 75, 325-336.	7.8	332
14	The Community Land Model and Its Climate Statistics as a Component of the Community Climate System Model. Journal of Climate, 2006, 19, 2302-2324.	3.2	320
15	Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. Journal of Geophysical Research, 2008, $113,\ldots$	3.3	306
16	Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes. Journal of Climate, 1997, 10, 1194-1215.	3.2	296
17	The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d). Journal of Hydrometeorology, 2001, 2, 7-25.	1.9	294
18	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment:. Global and Planetary Change, 1998, 19, 115-135.	3.5	265

#	Article	IF	Citations
19	Validation of the Snow Submodel of the Biosphere–Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data. Journal of Climate, 1997, 10, 353-373.	3.2	250
20	Validation of the energy budget of an alpine snowpack simulated by several snow models (Snow MIP) Tj ETQq0	0 0 rgBT /0	Overlock 10 T
21	Use of FLUXNET in the Community Land Model development. Journal of Geophysical Research, 2008, 113,	3.3	210
22	Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e). Global and Planetary Change, 2003, 38, 1-30.	3.5	194
23	An observationâ€based formulation of snow cover fraction and its evaluation over large North American river basins. Journal of Geophysical Research, 2007, 112, .	3.3	189
24	Effects of vegetation canopy processes on snow surface energy and mass balances. Journal of Geophysical Research, 2004, 109 , .	3.3	184
25	The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An Overview. Journal of Climate, 2004, 17, 187-208.	3.2	178
26	River Network Routing on the NHDPlus Dataset. Journal of Hydrometeorology, 2011, 12, 913-934.	1.9	166
27	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment:. Global and Planetary Change, 1998, 19, 161-179.	3.5	154
28	Hydrological evaluation of the Noahâ€MP land surface model for the Mississippi River Basin. Journal of Geophysical Research D: Atmospheres, 2014, 119, 23-38.	3.3	151
29	Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 2020, 11, 3710.	12.8	151
30	Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia. Journal of Hydrometeorology, 2003, 4, 334-351.	1.9	150
31	An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations. Journal of Climate, 2012, 25, 6271-6286.	3.2	150
32	Simulations of a Boreal Grassland Hydrology at Valdai, Russia: PILPS Phase 2(d). Monthly Weather Review, 2000, 128, 301-321.	1.4	148
33	Sensitivity of regional climates to localized precipitation in global models. Nature, 1990, 346, 734-737.	27.8	141
34	Preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a). Journal of Geophysical Research, 1995, 100, 16553.	3.3	134
35	Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. Journal of Geophysical Research, 2010, 115 , .	3.3	131
36	Assessment of simulated water balance from Noah, Noahâ€MP, CLM, and VIC over CONUS using the NLDAS test bed. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,751.	3.3	127

#	Article	IF	Citations
37	Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. Journal of Geophysical Research, 2003, 108, .	3.3	120
38	The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 2015, 129, 485-498.	3.6	114
39	Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. Journal of Hydrometeorology, 2020, 21, 1513-1530.	1.9	114
40	Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. Journal of Geophysical Research, 2009, 114 , .	3.3	107
41	Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e). Global and Planetary Change, 2003, 38, 31-53.	3.5	106
42	Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 2014, 191, 33-50.	4.8	105
43	Sensitivity of the Modeled North American Monsoon Regional Climate to Convective Parameterization. Monthly Weather Review, 2002, 130, 1282-1298.	1.4	104
44	Positive response of Indian summer rainfall to Middle East dust. Geophysical Research Letters, 2014, 41, 4068-4074.	4.0	104
45	Key results and implications from phase 1(c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 1999, 15, 673-684.	3.8	103
46	Decadal Modulation of Precipitation Patterns over Eastern China by Sea Surface Temperature Anomalies. Journal of Climate, 2017, 30, 7017-7033.	3.2	103
47	The Versatile Integrator of Surface and Atmosphere processes. Global and Planetary Change, 2003, 38, 175-189.	3.5	96
48	Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,795.	3.3	95
49	Dynamical downscaling of regional climate: A review of methods and limitations. Science China Earth Sciences, 2019, 62, 365-375.	5.2	94
50	Predicted impacts of climate and land use change on surface ozone in the Houston, Texas, area. Journal of Geophysical Research, 2008, 113, .	3.3	87
51	Multisensor snow data assimilation at the continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information. Journal of Geophysical Research, 2010, 115, .	3.3	86
52	Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Climate Dynamics, 2016, 46, 467-481.	3.8	84
53	Consistent response of Indian summer monsoon to Middle East dust in observations and simulations. Atmospheric Chemistry and Physics, 2015, 15, 9897-9915.	4.9	83
54	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment:. Global and Planetary Change, 1998, 19, 137-159.	3.5	82

#	Article	IF	Citations
55	Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance. Global and Planetary Change, 1996, 13, 117-134.	3.5	81
56	A new dynamical downscaling approach with GCM bias corrections and spectral nudging. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3063-3084.	3.3	80
57	Comparative Analyses of Physically Based Snowmelt Models for Climate Simulations. Journal of Climate, 1999, 12, 2643-2657.	3.2	73
58	Deforestation-induced warming over tropical mountain regions regulated by elevation. Nature Geoscience, 2021, 14, 23-29.	12.9	73
59	Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile?. Geophysical Research Letters, 2007, 34, .	4.0	72
60	Analysis of transpiration results from the RICE and PILPS workshop. Global and Planetary Change, 1996, 13, 73-88.	3.5	71
61	Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Scientific Data, 2021, 8, 293.	5.3	71
62	Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity. Nature Communications, 2022, 13, 1139.	12.8	70
63	Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing. Journal of Geophysical Research F: Earth Surface, 2014, 119, 1977-1994.	2.8	68
64	Future precipitation changes and their implications for tropical peatlands. Geophysical Research Letters, 2007, 34, .	4.0	65
65	Seasonal Responses of Indian Summer Monsoon to Dust Aerosols in the Middle East, India, and China. Journal of Climate, 2016, 29, 6329-6349.	3.2	64
66	Missing pieces to modeling the Arctic-Boreal puzzle. Environmental Research Letters, 2018, 13, 020202.	5.2	61
67	Assimilation of MODIS snow cover through the Data Assimilation Research Testbed and the Community Land Model version 4. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7091-7103.	3.3	60
68	RAPID applied to the SIM-France model. Hydrological Processes, 2011, 25, 3412-3425.	2.6	59
69	Enhancing the estimation of continentalâ€scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. Journal of Geophysical Research, 2008, 113, .	3.3	57
70	Effects of water table dynamics on regional climate: A case study over east Asian monsoon area. Journal of Geophysical Research, 2008, 113, .	3.3	57
71	Investigating diurnal and seasonal climatic response to land use and land cover change over monsoon Asia with the Community Earth System Model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1137-1152.	3.3	57
72	Integration of a Parsimonious Hydrological Model with Recurrent Neural Networks for Improved Streamflow Forecasting. Water (Switzerland), 2018, 10, 1655.	2.7	56

#	Article	IF	CITATIONS
73	Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agricultural and Forest Meteorology, 2013, 182-183, 111-127.	4.8	55
74	On the Sensitivity of the Precipitation Partitioning Into Evapotranspiration and Runoff in Land Surface Parameterizations. Water Resources Research, 2019, 55, 95-111.	4.2	54
75	Assessing a land surface model's improvements with GRACE estimates. Geophysical Research Letters, 2006, 33, .	4.0	52
76	The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sensing of Environment, 2014, 152, 345-355.	11.0	51
77	Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4). Journal of Hydrometeorology, 2016, 17, 153-170.	1.9	51
78	Spatiotemporal Evaluation of Simulated Evapotranspiration and Streamflow over Texas Using the WRFâ€Hydroâ€RAPID Modeling Framework. Journal of the American Water Resources Association, 2018, 54, 40-54.	2.4	51
79	Representation of Plant Hydraulics in the Noahâ€MP Land Surface Model: Model Development and Multiscale Evaluation. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002214.	3.8	50
80	Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation. Environmental Modelling and Software, 2018, 107, 1-11.	4.5	49
81	Retrieving snow mass from GRACE terrestrial water storage change with a land surface model. Geophysical Research Letters, 2007, 34, .	4.0	48
82	Assessing the Capability of a Regional-Scale Weather Model to Simulate Extreme Precipitation Patterns and Flooding in Central Texas. Weather and Forecasting, 2008, 23, 1102-1126.	1.4	47
83	The versatile integrator of surface atmospheric processes. Global and Planetary Change, 2003, 38, 191-208.	3. 5	45
84	Continentalâ€Scale River Flow Modeling of the Mississippi River Basin Using Highâ€Resolution NHD <i>Plus</i>) Dataset. Journal of the American Water Resources Association, 2017, 53, 258-279.	2.4	44
85	High Summertime Aerosol Loadings Over the Arabian Sea and Their Transport Pathways. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,568.	3.3	44
86	Simulation of snow mass and extent in general circulation models. Hydrological Processes, 1999, 13, 2097-2113.	2.6	40
87	Evaluating Enhanced Hydrological Representations in Noah LSM over Transition Zones: Implications for Model Development. Journal of Hydrometeorology, 2009, 10, 600-622.	1.9	40
88	Impacts of data length on optimal parameter and uncertainty estimation of a land surface model. Journal of Geophysical Research, 2004, 109, .	3.3	39
89	Regional-scale river flow modeling using off-the-shelf runoff products, thousands of mapped rivers and hundreds of stream flow gauges. Environmental Modelling and Software, 2013, 42, 116-132.	4.5	39
90	Sensitivity of Latent Heat Flux from PILPS Land-Surface Schemes to Perturbations of Surface Air Temperature. Journals of the Atmospheric Sciences, 1998, 55, 1909-1927.	1.7	38

#	Article	IF	Citations
91	Improving Land Surface Hydrological Simulations in China Using CLDAS Meteorological Forcing Data. Journal of Meteorological Research, 2019, 33, 1194-1206.	2.4	38
92	Unprecedented Drought Challenges for Texas Water Resources in a Changing Climate: What Do Researchers and Stakeholders Need to Know?. Earth's Future, 2020, 8, e2020EF001552.	6.3	38
93	One-dimensional snow water and energy balance model for vegetated surfaces. Hydrological Processes, 1999, 13, 2467-2482.	2.6	37
94	Multi-sensor land data assimilation: Toward a robust global soil moisture and snow estimation. Remote Sensing of Environment, 2018, 216, 13-27.	11.0	37
95	Projected changes of temperature and precipitation in Texas from downscaled global climate models. Climate Research, 2012, 53, 229-244.	1.1	37
96	Aggregation rules for surface parameters in global models. Hydrology and Earth System Sciences, 1997, 1, 217-226.	4.9	36
97	Sensitivity of ground heat flux to vegetation cover fraction and leaf area index. Journal of Geophysical Research, 1999, 104, 19505-19514.	3.3	36
98	Comparison of albedos computed by land surface models and evaluation against remotely sensed data. Journal of Geophysical Research, 2001, 106, 20687-20702.	3.3	34
99	Hydrometeorological Response of the Modeled North American Monsoon to Convective Parameterization. Journal of Hydrometeorology, 2003, 4, 235-250.	1.9	34
100	Snow data assimilationâ€constrained land initialization improves seasonal temperature prediction. Geophysical Research Letters, 2016, 43, 11,423.	4.0	33
101	Irrigation-Induced Environmental Changes around the Aral Sea: An Integrated View from Multiple Satellite Observations. Remote Sensing, 2017, 9, 900.	4.0	33
102	Impact of field-calibrated vegetation parameters on GCM climate simulations. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 1199-1223.	2.7	32
103	A wavelet approach to the shortâ€ŧerm to pluriâ€decennal variability of streamflow in the Mississippi river basin from 1934 to 1998. International Journal of Climatology, 2011, 31, 31-43.	3.5	32
104	Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation. Journal of Hydrometeorology, 2016, 17, 2853-2874.	1.9	32
105	Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions. Geoscientific Model Development, 2016, 9, 1-15.	3.6	31
106	A decade of RAPIDâ€"Reflections on the development of an open source geoscience code. Earth and Space Science, 2016, 3, 226-244.	2.6	31
107	Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agricultural and Forest Meteorology, 2013, 182-183, 145-155.	4.8	30
108	Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4–RTM–DART System. Journal of Hydrometeorology, 2016, 17, 2431-2454.	1.9	30

#	Article	IF	Citations
109	Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method. Journal of Hydrology, 2021, 592, 125814.	5.4	30
110	Power system resilience to floods: Modeling, impact assessment, and mid-term mitigation strategies. International Journal of Electrical Power and Energy Systems, 2022, 135, 107545.	5.5	30
111	New insights into the windâ€dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1776-1792.	3.3	29
112	Role of ocean evaporation in California droughts and floods. Geophysical Research Letters, 2016, 43, 6554-6562.	4.0	29
113	Sub-grid scale precipitation in ALCMs: re-assessing the land surface sensitivity using a single column model. Climate Dynamics, 1993, 9, 33-41.	3.8	27
114	Spin-up processes in the Community Land Model version 4 with explicit carbon and nitrogen components. Ecological Modelling, 2013, 263, 308-325.	2.5	27
115	Quantifying local-scale dust emission from the Arabian Red Sea coastal plain. Atmospheric Chemistry and Physics, 2017, 17, 993-1015.	4.9	27
116	Model performance, model robustness, and model fitness scores: A new method for identifying good landâ€surface models. Geophysical Research Letters, 2008, 35, .	4.0	26
117	Insights into Hydrometeorological Factors Constraining Flood Prediction Skill during the May and October 2015 Texas Hill Country Flood Events. Journal of Hydrometeorology, 2018, 19, 1339-1361.	1.9	26
118	Evaluation and Intercomparison of Multiple Snow Water Equivalent Products over the Tibetan Plateau. Journal of Hydrometeorology, 2019, 20, 2043-2055.	1.9	25
119	A Comprehensive Review of Specific Yield in Land Surface and Groundwater Studies. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002270.	3.8	25
120	MODELING LAND SURFACE PROCESSES IN SHORT-TERM WEATHER AND CLIMATE STUDIES. World Scientific Series on Asia-Pacific Weather and Climate, 2004, , 288-313.	0.2	25
121	Use of a Coupled Land Surface General Circulation Model to Examine the Impacts of Doubled Stomatal Resistance on the Water Resources of the American Southwest. Journal of Climate, 1999, 12, 3359-3375.	3.2	24
122	Sensitivity of biogenic secondary organic aerosols to future climate change at regional scales: An online coupled simulation. Atmospheric Environment, 2010, 44, 4891-4907.	4.1	24
123	Effects of soilâ€type datasets on regional terrestrial water cycle simulations under different climatic regimes. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,387.	3.3	24
124	Diagnostic evaluation of the Community Earth System Model in simulating mineral dust emission with insight into large-scale dust storm mobilization in the Middle East and North Africa (MENA). Aeolian Research, 2016, 21, 21-35.	2.7	24
125	High sensitivity of Indian summer monsoon to Middle East dust absorptive properties. Scientific Reports, 2016, 6, 30690.	3.3	23
126	Improving the Radiance Assimilation Performance in Estimating Snow Water Storage across Snow and Land-Cover Types in North America. Journal of Hydrometeorology, 2017, 18, 651-668.	1.9	23

#	Article	IF	Citations
127	Urbanization Aggravates Effects of Global Warming on Local Atmospheric Drying. Geophysical Research Letters, 2022, 49, .	4.0	22
128	Quantification of the upstreamâ€toâ€downstream influence in the Muskingum method and implications for speedup in parallel computations of river flow. Water Resources Research, 2013, 49, 2783-2800.	4.2	21
129	Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China. Advances in Atmospheric Sciences, 2019, 36, 1171-1187.	4.3	21
130	An integrated framework to model nitrate contaminants with interactions of agriculture, groundwater, and surface water at regional scales: The STICS–EauDyssée coupled models applied over the Seine River Basin. Journal of Hydrology, 2019, 568, 943-958.	5.4	21
131	Treatment of soil, vegetation and snow in land surface models: a test of the Biosphere–Atmosphere Transfer Scheme with the HAPEX-MOBILHY, ABRACOS and Russian data. Journal of Hydrology, 1998, 212-213, 109-127.	5.4	20
132	Comparative Evaluation of BATS2, BATS, and SiB2 with Amazon Data. Journal of Hydrometeorology, 2000, 1, 135-153.	1.9	20
133	Assimilation of Remotely Sensed LAI Into CLM4CN Using DART. Journal of Advances in Modeling Earth Systems, 2019, 11, 2768-2786.	3.8	20
134	Cloud Resolving WRF Simulations of Precipitation and Soil Moisture Over the Central Tibetan Plateau: An Assessment of Various Physics Options. Earth and Space Science, 2020, 7, e2019EA000865.	2.6	20
135	Assessing Noahâ€MP Parameterization Sensitivity and Uncertainty Interval Across Snow Climates. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030417.	3.3	20
136	Enhanced fixed-size parallel speedup with the Muskingum method using a trans-boundary approach and a large subbasins approximation. Water Resources Research, 2015, 51, 7547-7571.	4.2	19
137	Comparison and evaluation of multiple land surface products for the water budget in the Yellow River Basin. Journal of Hydrology, 2020, 584, 124534.	5.4	19
138	Stable water isotope simulation in different reservoirs of Manaus, Brazil, by Community Land Model incorporating stable isotopic effect. International Journal of Climatology, 2009, 29, 619-628.	3.5	18
139	Parameter estimation in ensemble based snow data assimilation: A synthetic study. Advances in Water Resources, 2011, 34, 407-416.	3.8	18
140	Interannual variation in biogenic emissions on a regional scale. Journal of Geophysical Research, 2007, 112, .	3.3	17
141	Climate, river network, and vegetation cover relationships across a climate gradient and their potential for predicting effects of decadal-scale climate change. Journal of Hydrology, 2013, 488, 101-109.	5.4	17
142	A <scp>GIS</scp> Framework for Regional Modeling of Riverine Nitrogen Transport: Case Study, San Antonio and Guadalupe Basins. Journal of the American Water Resources Association, 2016, 52, 1-15.	2.4	17
143	Comparison of different sequential assimilation algorithms for satellite-derived leaf area index using the Data Assimilation Research Testbed (version Lanai). Geoscientific Model Development, 2019, 12, 3119-3133.	3.6	17
144	Ensemble Evaluation of Hydrologically Enhanced Noah-LSM: Partitioning of the Water Balance in High-Resolution Simulations over the Little Washita River Experimental Watershed. Journal of Hydrometeorology, 2011, 12, 45-64.	1.9	16

#	Article	IF	CITATIONS
145	Spring soil moistureâ€precipitation feedback in the Southern Great Plains: How is it related to largeâ€scale atmospheric conditions?. Geophysical Research Letters, 2014, 41, 1283-1289.	4.0	16
146	Multiscale Changes in Snow Over the Tibetan Plateau During 1980–2018 Represented by Reanalysis Data Sets and Satellite Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031914.	3.3	16
147	Implementing surface parameter aggregation rules in the CCM3 global climate model: regional responses at the land surface. Hydrology and Earth System Sciences, 1999, 3, 463-476.	4.9	14
148	Error Characterization of Coupled Land Surface-Radiative Transfer Models for Snow Microwave Radiance Assimilation. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5247-5268.	6.3	14
149	Using NHDPlus as the Land Base for the Noahâ€distributed Model. Transactions in GIS, 2009, 13, 363-377.	2.3	13
150	Relative impacts of increased greenhouse gas concentrations and land cover change on the surface climate in arid and semi-arid regions of China. Climatic Change, 2017, 144, 491-503.	3.6	13
151	Estimating uncertainties in the newly developed multi-source land snow data assimilation system. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8254-8268.	3.3	12
152	Using different hydrological variables to assess the impacts of atmospheric forcing errors on optimization and uncertainty analysis of the CHASM surface model at a cold catchment. Journal of Geophysical Research, 2005, 110 , .	3.3	11
153	Development of species-based, regional emission capacities for simulation of biogenic volatile organic compound emissions in land-surface models: An example from Texas, USA. Atmospheric Environment, 2006, 40, 1464-1479.	4.1	11
154	Sensitivity of biogenic emissions simulated by a land-surface model to land-cover representations. Atmospheric Environment, 2008, 42, 4185-4197.	4.1	11
155	Emergent spectral properties of river network topology: an optimal channel network approach. Scientific Reports, 2017, 7, 11486.	3.3	11
156	The impact of implementing the bare essentials of surface transfer land surface scheme into the BMRC GCM. Climate Dynamics, 1995, 11, 279-297.	3.8	10
157	Evaluation of the simulations of the North American Monsoon in the NCAR CCM3. Geophysical Research Letters, 2001, 28, 1211-1214.	4.0	10
158	Effects of Averaging and Separating Soil Moisture and Temperature in the Presence of Snow Cover in a SVAT and Hydrological Model for a Southern Ontario, Canada, Watershed. Journal of Hydrometeorology, 2006, 7, 298-304.	1.9	9
159	A method to study the impact of climate change on variability of river flow: an example from the Guadalupe River in Texas. Climatic Change, 2012, 113, 965-979.	3.6	9
160	Development and evaluation of a physically-based lake level model for water resource management: A case study for Lake Buchanan, Texas. Journal of Hydrology: Regional Studies, 2015, 4, 661-674.	2.4	9
161	Water budget variation, groundwater depletion, and water resource vulnerability in the Haihe River Basin during the new millennium. Physics and Chemistry of the Earth, 2022, 126, 103141.	2.9	9
162	The aggregate description of semi-arid vegetation with precipitation-generated soil moisture heterogeneity. Hydrology and Earth System Sciences, 1997, 1, 205-212.	4.9	8

#	Article	IF	Citations
163	Land–atmosphere–aerosol coupling in North China during 2000–2013. International Journal of Climatology, 2017, 37, 1297-1306.	3.5	8
164	Gridded Statistical Downscaling Based on Interpolation of Parameters and Predictor Locations for Summer Daily Precipitation in North China. Journal of Applied Meteorology and Climatology, 2019, 58, 2295-2311.	1.5	8
165	Multiple possibilities for future precipitation changes in Asia under the Paris Agreement. International Journal of Climatology, 2020, 40, 4888-4902.	3.5	8
166	Falsificationâ€Oriented Signatureâ€Based Evaluation for Guiding the Development of Land Surface Models and the Enhancement of Observations. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002132.	3.8	7
167	Improving the local climate zone classification with building height, imperviousness, and machine learningAfor urban models. Computational Urban Science, 2022, 2, .	3.2	7
168	The impact of multi-sensor land data assimilation on river discharge estimation. Remote Sensing of Environment, 2022, 279, 113138.	11.0	7
169	Quantifying the impacts of landscape heterogeneity and model resolution on dust emissions in the Arabian Peninsula. Environmental Modelling and Software, 2016, 78, 106-119.	4.5	6
170	Understanding dust emission in the Bodélé region by extracting locally mobilized dust aerosols from satellite Aerosol Optical Depth data using principal component analysis. Aeolian Research, 2017, 24, 105-113.	2.7	6
171	Assimilating multi-satellite snow data in ungauged Eurasia improves the simulation accuracy of Asian monsoon seasonal anomalies. Environmental Research Letters, 2020, 15, 064033.	5.2	6
172	Modeling the Impacts of Nitrogen Dynamics on Regional Terrestrial Carbon and Water Cycles over China with Noah-MP-CN. Advances in Atmospheric Sciences, 2020, 37, 679-695.	4.3	6
173	Attribution of trends in meteorological drought during 1960–2016 over the Loess Plateau, China. Journal of Chinese Geography, 2021, 31, 1123-1139.	3.9	6
174	Investigating impacts of anomalous land-surface conditions on Australian climate with an advanced land-surface model coupled with the BMRC GCM. International Journal of Climatology, 1995, 15, 137-174.	3.5	5
175	Estimating Crop and Grass Productivity over the United States Using Satellite Solar-Induced Chlorophyll Fluorescence, Precipitation and Soil Moisture Data. Remote Sensing, 2020, 12, 3434.	4.0	5
176	More severe drought detected by the assimilation of brightness temperature and terrestrial water storage anomalies in Texas during 2010–2013. Journal of Hydrology, 2021, 603, 126802.	5.4	5
177	Potential surface hydrologic responses to increases in greenhouse gas concentrations and land use and land cover changes. International Journal of Climatology, 2019, 39, 814-827.	3.5	4
178	Perspectives for Tibetan Plateau data assimilation. National Science Review, 2020, 7, 495-499.	9.5	4
179	The Impact of Noah-MP Physical Parameterizations on Modeling Water Availability during Droughts in the Texas-Gulf Region. Journal of Hydrometeorology, 2021, , .	1.9	4
180	Hydroclimatic extremes and impacts in a changing environment: Observations, mechanisms, and projections. Journal of Hydrology, 2022, 608, 127615.	5.4	4

#	Article	IF	Citations
181	The impact of sea surface temperature on the North American monsoon: A GCM study. Geophysical Research Letters, 2003, 30, .	4.0	3
182	Optimal parameter and uncertainty estimation of a land surface model: Sensitivity to parameter ranges and model complexities. Advances in Atmospheric Sciences, 2005, 22, 142-157.	4.3	3
183	Representing and evaluating the landscape freeze/thaw properties and their impacts on soil impermeability: Hydrological processes in the community land model version 4. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7542-7557.	3.3	3
184	Foreword to the special issue: regional earth system modeling. Climatic Change, 2015, 129, 365-368.	3.6	3
185	Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability. Theoretical and Applied Climatology, 2018, 134, 793-800.	2.8	3
186	Retrieving accurate soil moisture over the Tibetan Plateau using multi-source remote sensing data assimilation with simultaneous state and parameter estimations. Journal of Hydrometeorology, 2021, , .	1.9	3
187	Simulations of seasonal variations of stable water isotopes in land surface process model CLM. Science Bulletin, 2009, 54, 1765-1772.	9.0	2
188	Evaluation and uncertainty attribution of the simulated streamflow from NoahMP-RAPID over a high-altitude mountainous basin. Chinese Science Bulletin, 2019, 64, 444-455.	0.7	2
189	A Soil Moistureâ€Dependent Model to Simulate Water Table Depth and Proportions of Surface and Subsurface Runoff and Its Validation at the Basin Scale. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	1
190	Hurricane Scenario Generation for Uncertainty Modeling of Coastal and Inland Flooding. Frontiers in Climate, 2021, 3, .	2.8	1
191	Ensemble Skill Gains Obtained From the Multiâ€Physics Versus Multiâ€Model Approaches for Continentalâ€Scale Hydrological Simulations. Water Resources Research, 2021, 57, e2020WR028846.	4.2	1
192	Impact of field-calibrated vegetation parameters on GCM climate simulations. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 1199-1223.	2.7	1
193	The impact of implementing the bare essentials of surface transfer land surface scheme into the BMRC GCM. Climate Dynamics, 1995, 11, 279-297.	3.8	1
194	Modeling the Continental Hydrology: The Interplay between Canopy Interception and Hill-Slope Runoff., 2004,, 284.		0
195	Foreword to the special issue: decadal scale drought in arid regions. Climatic Change, 2017, 144, 389-390.	3.6	0
196	Impacts of Fractional Snow Cover on Surface Air Temperature in the NCAR Community Atmosphere Model (NCAR-CAM2). , 2004, , .		0
197	TOWARDS AN ADVANCED ANALYSIS, SIMULATION, AND FORECASTING CAPABILITY FOR THE WATER CYCLE IN TEXAS. , 2017, , .		0
198	THE TEXAS WATER RESEARCH NETWORK: ADDRESSING CHALLENGES FOR 21 ST CENTURY TEXAS., 2017,,.		0