Robert E Oswald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vitro Effects of (+)MK-801 (dizocilpine) and Memantine on β-Amyloid Peptides Linked to Alzheimer's Disease. Biochemistry, 2020, 59, 4517-4522.	2.5	0
2	Surface water and groundwater analysis using aryl hydrocarbon and endocrine receptor biological assays and liquid chromatography-high resolution mass spectrometry in Susquehanna County, PA. Environmental Sciences: Processes and Impacts, 2019, 21, 988-998.	3.5	3
3	Comparative screening of recombinant antigen thermostability for improved leptospirosis vaccine design. Biotechnology and Bioengineering, 2019, 116, 260-271.	3.3	6
4	Noncompetitive antagonists induce cooperative AMPA receptor channel gating. Journal of General Physiology, 2019, 151, 156-173.	1.9	15
5	Modulation of AMPA Receptor Gating by the Anticonvulsant Drug, Perampanel. ACS Medicinal Chemistry Letters, 2019, 10, 237-242.	2.8	18
6	7-Phenoxy-Substituted 3,4-Dihydro-2 <i>H</i> -1,2,4-benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Nanomolar Potency. Journal of Medicinal Chemistry, 2018, 61, 251-264.	6.4	41
7	New Insights into the Mechanism of Ca2+-Dependent Inactivation of NMDA Receptors. Biophysical Journal, 2017, 113, 2131-2132.	0.5	2
8	Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design. ELife, 2017, 6, .	6.0	12
9	Current Recording and Kinetic Analyses for Single AMPA Receptors. Neuromethods, 2016, , 257-272.	0.3	2
10	NMR Approaches to Functional Dynamics of Genetically Separated iGluR Domains. Neuromethods, 2016, , 101-118.	0.3	1
11	Long-term impacts of unconventional drilling operations on human and animal health. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 447-459.	1.7	28
12	Role of Stoichiometry in the Dimer-Stabilizing Effect of AMPA Receptor Allosteric Modulators. ACS Chemical Biology, 2014, 9, 128-133.	3.4	9
13	Thermodynamics and Mechanism of the Interaction of Willardiine Partial Agonists with a Glutamate Receptor: Implications for Drug Development. Biochemistry, 2014, 53, 3790-3795.	2.5	8
14	Dynamics of Cleft Closure of the GluA2 Ligand-binding Domain in the Presence of Full and Partial Agonists Revealed by Hydrogen-Deuterium Exchange. Journal of Biological Chemistry, 2013, 288, 27658-27666.	3.4	27
15	Impacts of Gas Drilling on Human and Animal Health. New Solutions, 2012, 22, 51-77.	1.2	185
16	The Structure of (â^`)-Kaitocephalin Bound to the Ligand Binding Domain of the (S)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA)/Glutamate Receptor, GluA2. Journal of Biological Chemistry, 2012, 287, 41007-41013.	3.4	10
17	The Loss of an Electrostatic Contact Unique to AMPA Receptor Ligand Binding Domain 2 Slows Channel Activation. Biochemistry, 2012, 51, 4015-4027.	2.5	9
18	Mechanisms of Modal Activation of GluA3 Receptors. Molecular Pharmacology, 2011, 80, 49-59.	2.3	41

ROBERT E OSWALD

#	Article	IF	CITATIONS
19	Mechanism of AMPA Receptor Activation by Partial Agonists. Journal of Biological Chemistry, 2011, 286, 35257-35266.	3.4	39
20	On the Mechanisms of α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid (AMPA) Receptor Binding to Glutamate and Kainate. Journal of Biological Chemistry, 2010, 285, 12334-12343.	3.4	26
21	Hydrophobic Side Chain Dynamics of a Glutamate Receptor Ligand Binding Domain. Journal of Biological Chemistry, 2010, 285, 10154-10162.	3.4	16
22	Characterizing Single-Channel Behavior of GluA3 Receptors. Biophysical Journal, 2010, 99, 1437-1446.	0.5	37
23	Molecular Mechanism of Flop Selectivity and Subsite Recognition for an AMPA Receptor Allosteric Modulator: Structures of GluA2 and GluA3 in Complexes with PEPA. Biochemistry, 2010, 49, 2843-2850.	2.5	31
24	Piracetam Defines a New Binding Site for Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic Acid (AMPA) Receptors. Journal of Medicinal Chemistry, 2010, 53, 2197-2203.	6.4	58
25	Structure of the S1S2 glutamate binding domain of GLuR3. Proteins: Structure, Function and Bioinformatics, 2009, 75, 628-637.	2.6	44
26	Probing the Allosteric Modulator Binding Site of GluR2 with Thiazide Derivatives. Biochemistry, 2009, 48, 8594-8602.	2.5	65
27	Mechanisms of Antagonism of the GluR2 AMPA Receptor: Structure and Dynamics of the Complex of Two Willardiine Antagonists with the Glutamate Binding Domain. Biochemistry, 2009, 48, 3894-3903.	2.5	37
28	NMR Spectroscopy of the Ligand-Binding Core of Ionotropic Glutamate Receptor 2 Bound to 5-Substituted Willardiine Partial Agonists. Journal of Molecular Biology, 2008, 378, 673-685.	4.2	33
29	Mechanism of Partial Agonism at the GluR2 AMPA Receptor: Measurements of Lobe Orientation in Solution. Biochemistry, 2008, 47, 10600-10610.	2.5	38
30	Structure of Glutamate Receptors. Current Drug Targets, 2007, 8, 573-582.	2.1	33
31	Dynamics of the S1S2 Glutamate Binding Domain of GluR2 Measured Using 19F NMR Spectroscopy. Journal of Biological Chemistry, 2007, 282, 12773-12784.	3.4	44
32	Molecular properties of local anesthetics as predictors of affinity for nicotinic acetylcholine receptors. Journal of Neuroscience Research, 2007, 85, 2943-2949.	2.9	5
33	Backbone chemical shift assignment of a glutamate receptor ligand binding domain in complexes with five partial agonists. Biomolecular NMR Assignments, 2007, 1, 241-243.	0.8	5
34	Ionotropic Glutamate Receptor Recognition and Activation. Advances in Protein Chemistry, 2004, 68, 313-349.	4.4	32
35	Emerging structural explanations of ionotropic glutamate receptor function. FASEB Journal, 2004, 18, 428-438.	0.5	54
36	cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon, 2003, 42, 263-274.	1.6	74

ROBERT E OSWALD

#	Article	IF	CITATIONS
37	Solution Structure of Peptide Toxins That Block Mechanosensitive Ion Channels. Journal of Biological Chemistry, 2002, 277, 34443-34450.	3.4	88
38	Structural Mobility of the Extracellular Ligand-Binding Core of an Ionotropic Glutamate Receptor. Analysis of NMR Relaxation Dynamics. Biochemistry, 2002, 41, 10472-10481.	2.5	84
39	Semi-automated backbone resonance assignments of the extracellular ligand-binding domain of an ionotropic glutamate receptor. Journal of Biomolecular NMR, 2002, 22, 297-298.	2.8	13
40	Concerted Motion of a Proteinâ^'Peptide Complex:Â Backbone Dynamics Studies of an15N-Labeled Peptide Derived from P21-Activated Kinase Bound to Cdc42Hs·GMPPCPâ€. Biochemistry, 2001, 40, 14368-14375.	2.5	16
41	Structural Insights Into NMDA Ionotropic Glutamate Receptors via Molecular Modelling. Journal of Molecular Modeling, 2000, 6, 16-25.	1.8	8
42	Backbone Dynamics of Inactive, Active, and Effector-Bound Cdc42Hs from Measurements of15N Relaxation Parameters at Multiple Field Strengthsâ€. Biochemistry, 1999, 38, 12547-12557.	2.5	49
43	ldentification of the Binding Surface on Cdc42Hs for p21-Activated Kinaseâ€. Biochemistry, 1998, 37, 14030-14037.	2.5	38
44	Unraveling the modular design of glutamate-gated ion channels. Trends in Neurosciences, 1995, 18, 161-168.	8.6	264
45	Asn-265 of frog kainate binding protein is a functional glycosylation site: implications for the transmembrane topology of glutamate receptors. FEBS Letters, 1995, 368, 230-234.	2.8	7
46	Model Building Predicts an Additional Conformational Switch when GTP Binds to the CDC42HS Protein. Protein and Peptide Letters, 1994, 1, 84-91.	0.9	6
47	A reevaluation of the mathematical models for simulating single-channel and whole-cell ionic currents. Synapse, 1988, 2, 97-103.	1.2	8
48	Effects of pineal factors on the action potentials of sympathetic neurons. Cellular and Molecular Neurobiology, 1986, 6, 381-395.	3.3	3
49	Effects of Calcium on the Binding of Phencyclidine to Acetylcholine Receptor-Rich Membrane Fragments from Torpedo californica Electroplaque. Journal of Neurochemistry, 1983, 41, 1077-1084.	3.9	15
50	Evidence for a skeleton in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ. FEBS Letters, 1982, 145, 250-257.	2.8	12
51	Crosslinking of α-bungarotoxin to the acetylcholine receptor from Torpedo marmorata by ultraviolet light irradiation. FEBS Letters, 1982, 139, 225-229.	2.8	76
52	Analysis of ?-Bungarotoxin Binding in the Goldfish Central Nervous System. Journal of Neurochemistry, 1981, 37, 1586-1593.	3.9	6