
Lina Zelinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630890/publications.pdf Version: 2024-02-01

Article	IF	CITATIONS
A Missense Mutation in DHDDS, Encoding Dehydrodolichyl Diphosphate Synthase, Is Associated with Autosomal-Recessive Retinitis Pigmentosa in Ashkenazi Jews. American Journal of Human Genetics, 2011, 88, 207-215.	2.6	120
NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors. Cell Reports, 2016, 17, 2460-2473.	2.9	104
Mutations in IMPG2, Encoding Interphotoreceptor Matrix Proteoglycan 2, Cause Autosomal-Recessive Retinitis Pigmentosa. American Journal of Human Genetics, 2010, 87, 199-208.	2.6	98
Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia. Molecular Therapy, 2015, 23, 1423-1433.	3.7	93
Mutations in RAB28, Encoding a Farnesylated Small GTPase, Are Associated with Autosomal-Recessive Cone-Rod Dystrophy. American Journal of Human Genetics, 2013, 93, 110-117.	2.6	85
A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. Journal of Medical Genetics, 2014, 51, 460-469.	1.5	78
Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice. American Journal of Human Genetics, 2009, 84, 683-691.	2.6	76
Mutations in ARL2BP, Encoding ADP-Ribosylation-Factor-Like 2 Binding Protein, Cause Autosomal-Recessive Retinitis Pigmentosa. American Journal of Human Genetics, 2013, 93, 321-329.	2.6	67
Genetics and Disease Expression in the CNGA3 Form of Achromatopsia. Ophthalmology, 2015, 122, 997-1007.	2.5	61
Identification of Mutations Causing Inherited Retinal Degenerations in the Israeli and Palestinian Populations Using Homozygosity Mapping. , 2014, 55, 1149.		46
Whole Exome Sequencing Reveals GUCY2D as a Major Gene Associated With Cone and Cone-Rod Dystrophy in Israel. Investigative Ophthalmology and Visual Science, 2015, 56, 420-430.	3.3	32
RNA Biology in Retinal Development and Disease. Trends in Genetics, 2018, 34, 341-351.	2.9	29
Exome Sequencing Identifies a Founder Frameshift Mutation in an Alternative Exon of USH1C as the Cause of Autosomal Recessive Retinitis Pigmentosa with Late-Onset Hearing Loss. PLoS ONE, 2012, 7, e51566.	1.1	27
Mutations in <i>CRB1</i> are a Relatively Common Cause of Autosomal Recessive Early-Onset Retinal Degeneration in the Israeli and Palestinian Populations. , 2013, 54, 2068.		25
Cone Dystrophy with Supernormal Rod Response. Ophthalmology, 2013, 120, 2338-2343.	2.5	23
Regulation of Noncoding Transcriptome in Developing Photoreceptors by Rod Differentiation Factor NRL. , 2017, 58, 4422.		19
Nonsyndromic Early-Onset Cone-Rod Dystrophy and Limb-Girdle Muscular Dystrophy in a Consanguineous Israeli Family are Caused by Two Independent yet Linked Mutations in <i>ALMS1</i> and <i>DYSF</i> . Human Mutation, 2015, 36, 836-841.	1.1	17
TRPM1 Mutations are the Most Common Cause of Autosomal Recessive Congenital Stationary Night Blindness (CSNB) in the Palestinian and Israeli Populations. Scientific Reports, 2019, 9, 12047.	1.6	14
	A Missense Mutation in DHDDS, Encoding Dehydrodolichyl Diphosphate Synthiase, Is Associated with Autosomal Recessive Retinitis Pigmentosa in Ashkenazi Jews. American Journal of Human Cenetics, 2011, 88, 207215. NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors. Cell Reports, 2016, 17, 2460-2473. Mutations in IMPC2, Encoding Interphotoreceptor Matrix Proteoglycan 2, Cause Autosomal-Recessive Retinitis Pigmentosa. American Journal of Human Cenetics, 2010, 57, 199-208. Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Actromatopsia. Molecular Therapy, 2015, 23, 1423-1433. Mutations in RA028, Encoding a Farnesylated Small CPDase, Are Associated with Autosomal-Recessive ConerRod Dystrophy. American Journal of Human Cenetics, 2013, 93, 110-117. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. Journal of Medical Cenetics, 2014, 51, 460-469. Loss of the Metalloprotesee ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice. American Journal of Human Cenetics, 2009, 84, 683-691. Mutations in ARL28P, Encoding ADP-Ribosylation-Factor-Like 2 Binding Protein, Cause Autosomal-Recessive Retinitis Pigmentosa. American Journal of Human Cenetics, 2013, 93, 321-329. Cenetics and Disease Expression in the CNGA3 Form of Achromatopsia. Ophthalmology, 2015, 122, 997-1007. Identification of Mutations Causing Inherited Retinal Degenerations in the Israeli and Palestinian Populations Using Homozygosity Mapping., 2014, 55, 1149. Whole Exome Sequencing Reveals GUCY20 as a Major Gene Associated With Cone and Cone-Rod Dystrophy in Israel. Investigative Ophthalmology and Visual Science, 2015, 56, 420-430. RNA Biology in Retinal Development and Disease. Trends in Genetics, 2018, 34, 341-351. Come Sequencing Identifies a Founder Frameshift Mutation in an Alternative Exon of USHIC as the Cause of Autosomal Recessive Retinitis Pigmentosa with Late-Onset Hearing Loss. PLO	A Missense Mutation in DHDDS, Encoding Dehydrodolichyl Diphosphate Synthase, is Associated with Autosemal Receasive Retinitis Pigmentosa in Ashkenazi Jews. American Journal of Human Genetics, 2011, 8, 207213. 2.6 NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors. Cell Reports, 2016, 17, 2460-2473. 2.9 Mitsteins in MAC2. Encoding Interphotoreceptor Matrix Proteoglycan 2, Cause Autosomal-Recessive Retinits Pigmentosa. American Journal of Human Cenetics, 2010, 67, 199-208. 2.6 Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 8.7 Mitations in MAC2. Encoding Interphotoreceptor Matrix 2010, 67, 199-208. 2.6 Cene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 8.7 Mitations in AR28. Encoding Parmeylated Small CTPace Are Associated with Autosomal-Recessive Concerved Dystrophy. American Journal of Human Cenetics, 2013, 93, 110-117. 2.6 A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Liber syndrome. Journal of Medical Genetics, 2014, 51, 460-469. 1.5 Loss of the Metalloproteories ADAM9 leads to Cone Rod Dystrophy In Humans and Retinal Degeneration in Mice. American Journal of Human Genetics, 2013, 93, 321-329. 2.6 Genetics and Disease Expression in the CNGA3 form of Achromatopsia. Ophthalmology, 2015, 122. 2.6 Genetics and Disease Expression in the CNGA3 form of Achromatopsia. Ophthalmology, 2015, 122. 2.9

#	Article	IF	CITATIONS
19	An ancient autosomal haplotype bearing a rare achromatopsia-causing founder mutation is shared among Arab Muslims and Oriental Jews. Human Genetics, 2010, 128, 261-267.	1.8	12
20	SSBP1 faux pas in mitonuclear tango causes optic neuropathy. Journal of Clinical Investigation, 2019, 130, 62-64.	3.9	3