Christian Landry

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8630879/christian-landry-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

137 6,159 40 76 g-index

169 7,474 8.5 st. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
137	High-Throughput Gene Mutagenesis Screening Using Base Editing <i>Methods in Molecular Biology</i> , 2022 , 2477, 331-348	1.4	
136	Deep Mutational Scanning of Protein-Protein Interactions Between Partners Expressed from Their Endogenous Loci In Vivo <i>Methods in Molecular Biology</i> , 2022 , 2477, 237-259	1.4	
135	Frequent Assembly of Chimeric Complexes in the Protein Interaction Network of an Interspecies Yeast Hybrid. <i>Molecular Biology and Evolution</i> , 2021 , 38, 1384-1401	8.3	4
134	Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. <i>Nature Communications</i> , 2021 , 12, 1597	17.4	7
133	Yeast proteins do not practice social distancing as species hybridize. Current Genetics, 2021, 67, 755-759	2.9	О
132	The neutral rate of whole-genome duplication varies among yeast species and their hybrids. <i>Nature Communications</i> , 2021 , 12, 3126	17.4	О
131	The Canadian Fungal Research Network: current challenges and future opportunities. <i>Canadian Journal of Microbiology</i> , 2021 , 67, 13-22	3.2	3
130	Closely related budding yeast species respond to different ecological signals for spore activation. <i>Yeast</i> , 2021 , 38, 81-89	3.4	О
129	Interspecific hybrids show a reduced adaptive potential under DNA damaging conditions. <i>Evolutionary Applications</i> , 2021 , 14, 758-769	4.8	О
128	Expression attenuation as a mechanism of robustness against gene duplication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
127	The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. <i>Parasites and Vectors</i> , 2021 , 14, 436	4	О
126	Identifying features of genome evolution to exploit cancer vulnerabilities Cell Systems, 2021, 12, 1127-	11360	
125	Similarities in biological processes can be used to bridge ecology and molecular biology. <i>Evolutionary Applications</i> , 2020 , 13, 1335-1350	4.8	1
124	The Genome Sequence of the Jean-Talon Strain, an Archeological Beer Yeast from QuBec, Reveals Traces of Adaptation to Specific Brewing Conditions. <i>G3: Genes, Genomes, Genetics</i> , 2020 , 10, 3087-3097	.3.2	1
123	Hybridization and introgression drive genome evolution of Dutch elm disease pathogens. <i>Nature Ecology and Evolution</i> , 2020 , 4, 626-638	12.3	23
122	Competition experiments in a soil microcosm reveal the impact of genetic and biotic factors on natural yeast populations. <i>ISME Journal</i> , 2020 , 14, 1410-1421	11.9	2
121	Perturbing proteomes at single residue resolution using base editing. <i>Nature Communications</i> , 2020 , 11, 1871	17.4	26

(2018-2020)

120	Diverse perspectives on interdisciplinarity from Members of the College of the Royal Society of Canada. <i>Facets</i> , 2020 , 5, 138-165	2.3	9
119	Purification of Yeast Spores to Investigate Their Dynamics of Activation. <i>Current Protocols in Microbiology</i> , 2020 , 59, e123	7.1	O
118	The effect of hybridization on transposable element accumulation in an undomesticated fungal species. <i>ELife</i> , 2020 , 9,	8.9	9
117	BUBR1 Pseudokinase Domain Promotes Kinetochore PP2A-B56 Recruitment, Spindle Checkpoint Silencing, and Chromosome Alignment. <i>Cell Reports</i> , 2020 , 33, 108397	10.6	5
116	Spontaneous whole-genome duplication restores fertility in interspecific hybrids. <i>Nature Communications</i> , 2019 , 10, 4126	17.4	20
115	Differences Between the Raw Material and the Products of Gene Birth Can Result from Mutational Biases. <i>Genetics</i> , 2019 , 212, 1353-1366	4	6
114	Turnover of ribosome-associated transcripts from de novo ORFs produces gene-like characteristics available for de novo gene emergence in wild yeast populations. <i>Genome Research</i> , 2019 , 29, 932-943	9.7	22
113	: A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. <i>Genetics</i> , 2019 , 212, 377-385	4	21
112	Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. <i>Nature Communications</i> , 2019 , 10, 923	17.4	35
111	Paralog dependency indirectly affects the robustness of human cells. <i>Molecular Systems Biology</i> , 2019 , 15, e8871	12.2	19
110	The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. <i>ELife</i> , 2019 , 8,	8.9	15
109	Regulation plays a multifaceted role in the retention of gene duplicates. <i>PLoS Biology</i> , 2019 , 17, e30005	1 99 7	8
108	A collection of barcoded natural isolates of Saccharomyces paradoxus to study microbial evolutionary ecology. <i>MicrobiologyOpen</i> , 2018 , 8, e773	3.4	4
107	Extended Linkers Improve the Detection of Protein-protein Interactions (PPIs) by Dihydrofolate Reductase Protein-fragment Complementation Assay (DHFR PCA) in Living Cells. <i>Molecular and Cellular Proteomics</i> , 2018 , 17, 373-383	7.6	1
106	Extended Linkers Improve the Detection of Protein-protein Interactions (PPIs) by Dihydrofolate Reductase Protein-fragment Complementation Assay (DHFR PCA) in Living Cells. <i>Molecular and Cellular Proteomics</i> , 2018 , 17, 373-383	7.6	6
105	Direct Phosphorylation of SRC Homology 3 Domains by Tyrosine Kinase Receptors Disassembles Ligand-Induced Signaling Networks. <i>Molecular Cell</i> , 2018 , 70, 995-1007.e11	17.6	10
104	Double Selection Enhances the Efficiency of Target-AID and Cas9-Based Genome Editing in Yeast. <i>G3: Genes, Genomes, Genetics</i> , 2018 , 8, 3163-3171	3.2	12
103	A systems biology approach to explore the impact of maple tree dormancy release on sap variation and maple syrup quality. <i>Scientific Reports</i> , 2018 , 8, 14658	4.9	7

102	Mitochondrial Recombination Reveals Mito-Mito Epistasis in Yeast. <i>Genetics</i> , 2018 , 209, 307-319	4	19
101	Major host transitions are modulated through transcriptome-wide reprogramming events in Schistocephalus solidus, a threespine stickleback parasite. <i>Molecular Ecology</i> , 2017 , 26, 1118-1130	5.7	16
100	Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. <i>Science</i> , 2017 , 355, 630-634	33.3	61
99	Hybridization and adaptive evolution of diverse species for cellulosic biofuel production. <i>Biotechnology for Biofuels</i> , 2017 , 10, 78	7.8	52
98	The Rapid Evolution of an Ohnolog Contributes to the Ecological Specialization of Incipient Yeast Species. <i>Molecular Biology and Evolution</i> , 2017 , 34, 2173-2186	8.3	10
97	Mitochondrial Recombination and Introgression during Speciation by Hybridization. <i>Molecular Biology and Evolution</i> , 2017 , 34, 1947-1959	8.3	36
96	No evidence for extrinsic post-zygotic isolation in a wild yeast system. <i>Biology Letters</i> , 2017 , 13,	3.6	7
95	Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland. <i>Molecular Ecology</i> , 2017 , 26, 995-1007	5.7	9
94	Identification of the fitness determinants of budding yeast on a natural substrate. <i>ISME Journal</i> , 2017 , 11, 959-971	11.9	13
93	When nuclear-encoded proteins and mitochondrial RNAs do not get along, species split apart. <i>EMBO Reports</i> , 2017 , 18, 8-10	6.5	4
92	Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins. <i>ELife</i> , 2017 , 6,	8.9	57
91	Evolutionary biology through the lens of budding yeast comparative genomics. <i>Nature Reviews Genetics</i> , 2017 , 18, 581-598	30.1	43
90	Yeast Population Genomics Goes Wild: The Case of Saccharomyces paradoxus. <i>Population Genomics</i> , 2017 , 207-230	1.4	5
89	Molecular Dependency Impacts on the Compensating Ability of Paralogs: A Response to Veitia. <i>Trends in Genetics</i> , 2017 , 33, 657-658	8.5	1
88	Multi-scale perturbations of protein interactomes reveal their mechanisms of regulation, robustness and insights into genotype-phenotype maps. <i>Briefings in Functional Genomics</i> , 2016 , 15, 130-	.4 ·9	6
87	Speciation driven by hybridization and chromosomal plasticity in a wild yeast. <i>Nature Microbiology</i> , 2016 , 1, 15003	26.6	120
86	The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila. <i>Current Biology</i> , 2016 , 26, 3116-3128	6.3	46
85	The Dihydrofolate Reductase Protein-Fragment Complementation Assay: A Survival-Selection Assay for Large-Scale Analysis of Protein-Protein Interactions. <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	3

(2015-2016)

84	Combining the Dihydrofolate Reductase Protein-Fragment Complementation Assay with Gene Deletions to Establish Genotype-to-Phenotype Maps of Protein Complexes and Interaction Networks. <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	2	
83	Protein-Fragment Complementation Assays for Large-Scale Analysis, Functional Dissection, and Spatiotemporal Dynamic Studies of Protein-Protein Interactions in Living Cells. <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	5	
82	Evidence of Natural Hybridization in Brazilian Wild Lineages of Saccharomyces cerevisiae. <i>Genome Biology and Evolution</i> , 2016 , 8, 317-29	3.9	45	
81	Transcriptome sequences spanning key developmental states as a resource for the study of the cestode Schistocephalus solidus, a threespine stickleback parasite. <i>GigaScience</i> , 2016 , 5, 24	7.6	32	
80	Molecular and cellular bases of adaptation to a changing environment in microorganisms. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283,	4.4	48	
79	Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus. <i>PLoS Genetics</i> , 2016 , 12, e1006155	6	72	
78	Dissection of expression-quantitative trait locus and allele specificity using a haploid/diploid plant system - insights into compensatory evolution of transcriptional regulation within populations. <i>New Phytologist</i> , 2016 , 211, 159-71	9.8	20	
77	Mitotic phosphotyrosine network analysis reveals that tyrosine phosphorylation regulates Polo-like kinase 1 (PLK1). <i>Science Signaling</i> , 2016 , 9, rs14	8.8	18	
76	Feedback regulation between autophagy and PKA. <i>Autophagy</i> , 2015 , 11, 1181-3	10.2	23	
75	The last enzyme of the de novo purine synthesis pathway 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) plays a central role in insulin signaling and the Golgi/endosomes protein network. <i>Molecular and Cellular Proteomics</i> , 2015 , 14, 1079-92	7.6	15	
74	Found in translation: functions and evolution of a recently discovered alternative proteome. <i>Current Opinion in Structural Biology</i> , 2015 , 32, 74-80	8.1	38	
73	Systematic identification of signal integration by protein kinase A. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4501-6	11.5	41	
7 2	The yeast galactose network as a quantitative model for cellular memory. <i>Molecular BioSystems</i> , 2015 , 11, 28-37		28	
71	Metabolic variation in natural populations of wild yeast. <i>Ecology and Evolution</i> , 2015 , 5, 722-32	2.8	14	
70	The genomics of wild yeast populations sheds light on the domestication of man's best (micro) friend. <i>Molecular Ecology</i> , 2015 , 24, 5309-11	5.7	11	
69	Genome-wide protein-protein interaction screening by protein-fragment complementation assay (PCA) in living cells. <i>Journal of Visualized Experiments</i> , 2015 ,	1.6	11	
68	Evolutionary rescue by compensatory mutations is constrained by genomic and environmental backgrounds. <i>Molecular Systems Biology</i> , 2015 , 11, 832	12.2	38	
67	RNAseq Analysis Highlights Specific Transcriptome Signatures of Yeast and Mycelial Growth Phases in the Dutch Elm Disease Fungus Ophiostoma novo-ulmi. <i>G3: Genes, Genomes, Genetics</i> , 2015 , 5, 2487-9	5 ^{3.2}	13	

66	Identification of candidate mimicry proteins involved in parasite-driven phenotypic changes. <i>Parasites and Vectors</i> , 2015 , 8, 225	4	11
65	Lachancea quebecensis sp. nov., a yeast species consistently isolated from tree bark in the Canadian province of QuBec. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2015 , 65, 3392-3399	2.2	7
64	Local climatic adaptation in a widespread microorganism. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20132472	4.4	49
63	Modulation of the yeast protein interactome in response to DNA damage. <i>Journal of Proteomics</i> , 2014 , 100, 25-36	3.9	15
62	Chromosomal variation segregates within incipient species and correlates with reproductive isolation. <i>Molecular Ecology</i> , 2014 , 23, 4362-72	5.7	48
61	The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. <i>Molecular Cell</i> , 2014 , 55, 422-435	17.6	70
60	Functional divergence and evolutionary turnover in mammalian phosphoproteomes. <i>PLoS Genetics</i> , 2014 , 10, e1004062	6	39
59	Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences. <i>PLoS Computational Biology</i> , 2014 , 10, e1003977	5	27
58	Turnover of protein phosphorylation evolving under stabilizing selection. <i>Frontiers in Genetics</i> , 2014 , 5, 245	4.5	35
57	Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America. <i>FEMS Yeast Research</i> , 2014 , 14, 281-8	3.1	50
56	Molecular mechanisms of paralogous compensation and the robustness of cellular networks. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 488-99	1.8	42
55	Recent advances in ecological genomics: from phenotypic plasticity to convergent and adaptive evolution and speciation. <i>Advances in Experimental Medicine and Biology</i> , 2014 , 781, 1-5	3.6	4
54	Integrative avenues for exploring the dynamics and evolution of protein interaction networks. <i>Current Opinion in Biotechnology</i> , 2013 , 24, 775-83	11.4	13
53	Extracting insight from noisy cellular networks. <i>Cell</i> , 2013 , 155, 983-9	56.2	43
52	A systematic approach for the genetic dissection of protein complexes in living cells. <i>Cell Reports</i> , 2013 , 3, 2155-67	10.6	28
51	qPCA: a scalable assay to measure the perturbation of protein-protein interactions in living cells. <i>Molecular BioSystems</i> , 2013 , 9, 36-43		25
50	Transcriptional divergence plays a role in the rewiring of protein interaction networks after gene duplication. <i>Journal of Proteomics</i> , 2013 , 81, 112-25	3.9	20
49	Are long-lived trees poised for evolutionary change? Single locus effects in the evolution of gene expression networks in spruce. <i>Molecular Ecology</i> , 2013 , 22, 2369-79	5.7	13

(2010-2012)

48	Compositional differences between size classes of dissolved organic matter from freshwater and seawater revealed by an HPLC-FTIR system. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	40
47	Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2012 , 367, 2594-606	5.8	70
46	The genotype-phenotype maps of systems biology and quantitative genetics: distinct and complementary. <i>Advances in Experimental Medicine and Biology</i> , 2012 , 751, 371-98	3.6	12
45	What is needed for next-generation ecological and evolutionary genomics?. <i>Trends in Ecology and Evolution</i> , 2012 , 27, 673-8	10.9	66
44	Evidence for the robustness of protein complexes to inter-species hybridization. <i>PLoS Genetics</i> , 2012 , 8, e1003161	6	36
43	Proteomic characterization of phagosomal membrane microdomains during phagolysosome biogenesis and evolution. <i>Molecular and Cellular Proteomics</i> , 2012 , 11, 1365-77	7.6	14
42	Characterization of spindle checkpoint kinase Mps1 reveals domain with functional and structural similarities to tetratricopeptide repeat motifs of Bub1 and BubR1 checkpoint kinases. <i>Journal of Biological Chemistry</i> , 2012 , 287, 5988-6001	5.4	26
41	Where do phosphosites come from and where do they go after gene duplication?. <i>International Journal of Evolutionary Biology</i> , 2012 , 2012, 843167		4
40	Cell biology. A cellular roadmap for the plant kingdom. <i>Science</i> , 2011 , 333, 532-3	33.3	8
39	Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein-protein interactions in living cells. <i>Methods in Molecular Biology</i> , 2011 , 756, 395-425	1.4	25
38	Phosphorylation network rewiring by gene duplication. <i>Molecular Systems Biology</i> , 2011 , 7, 504	12.2	28
37	Haploid transcriptome analysis reveals allelelic gene expression variants, co-expressed gene groups, and linkages between expression and copy number variation. <i>BMC Proceedings</i> , 2011 , 5,	2.3	78
36	Key considerations for measuring allelic expression on a genomic scale using high-throughput sequencing. <i>Molecular Ecology</i> , 2010 , 19 Suppl 1, 212-27	5.7	54
35	Gene network architecture as a canvas for the interpretation of ecological genomics investigations. <i>Molecular Ecology</i> , 2010 , 19, 5084-5	5.7	3
34	Molecular characterization of the evolution of phagosomes. <i>Molecular Systems Biology</i> , 2010 , 6, 423	12.2	107
33	Cell signaling. Signaling through cooperation. <i>Science</i> , 2010 , 328, 983-4	33.3	40
32	A toolkit of protein-fragment complementation assays for studying and dissecting large-scale and dynamic protein-protein interactions in living cells. <i>Methods in Enzymology</i> , 2010 , 470, 335-68	1.7	38
31	Chromatin regulators shape the genotype-phenotype map. <i>Molecular Systems Biology</i> , 2010 , 6, 434	12.2	4

30	Moving from transcriptional to phospho-evolution: generalizing regulatory evolution?. <i>Trends in Genetics</i> , 2010 , 26, 462-7	8.5	43
29	How perfect can protein interactomes be?. Science Signaling, 2009, 2, pe11	8.8	60
28	Weak functional constraints on phosphoproteomes. <i>Trends in Genetics</i> , 2009 , 25, 193-7	8.5	222
27	Systems biology spins off a new model for the study of canalization. <i>Trends in Ecology and Evolution</i> , 2009 , 24, 63-6	10.9	12
26	Cascading transcriptional effects of a naturally occurring frameshift mutation in Saccharomyces cerevisiae. <i>Molecular Ecology</i> , 2008 , 17, 2985-97	5.7	31
25	An in vivo map of the yeast protein interactome. <i>Science</i> , 2008 , 320, 1465-70	33.3	576
24	A genome-wide view of the spectrum of spontaneous mutations in yeast. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 9272-7	11.5	511
23	Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. <i>PLoS Biology</i> , 2008 , 6, e277	9.7	222
22	Genetic properties influencing the evolvability of gene expression. <i>Science</i> , 2007 , 317, 118-21	33.3	251
21	Genome clashes in hybrids: insights from gene expression. <i>Heredity</i> , 2007 , 99, 483-93	3.6	107
20	Indel arrays: an affordable alternative for genotyping. <i>Plant Journal</i> , 2007 , 51, 727-37	6.9	54
19	Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 16916-21	11.5	158
18	Systems-level analysis and evolution of the phototransduction network in Drosophila. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 3283-8	11.5	16
17	Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. <i>Gene</i> , 2006 , 366, 343-51	3.8	89
16	Ecological and evolutionary genomics of Saccharomyces cerevisiae. <i>Molecular Ecology</i> , 2006 , 15, 575-91	5.7	83
15	Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. <i>BMC Genomics</i> , 2005 , 6, 158	4.5	43
14	Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of Drosophila. <i>Genetics</i> , 2005 , 171, 1813-22	4	151
13	Alternative life histories shape brain gene expression profiles in males of the same population. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1655-62	4.4	163

LIST OF PUBLICATIONS

12	MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years?. Journal of Evolutionary Biology, 2003, 16, 363-77	3	711
11	Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). <i>Molecular</i> 5. <i>Ecology</i> , 2001 , 10, 2525-39	7	161
10	The rate of whole-genome duplication can be accelerated by hybridization		1
9	The high turnover of ribosome-associated transcripts from de novo ORFs produces gene-like characteristics available for de novo gene emergence in wild yeast populations		2
8	The effect of hybridization on transposable element accumulation in an undomesticated fungal species		1
7	Major host transitions are modulated through transcriptome-wide reprograming events in Schistocephalus solidus, a threespine stickleback parasite		1
6	Deep transcriptome annotation suggests that small and large proteins encoded in the same genes often cooperate		1
5	The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions		1
4	Mapping Gene-Microbe Interactions: Insights from Functional Genomics Co-culture Experiments between Saccharomyces cerevisiae and Pseudomonas spp		1
3	Frequent assembly of chimeric complexes in the protein interaction network of an interspecies yeast hybrid		1
2	Differences between the de novo proteome and its non-functional precursor can result from neutral constraints on its birth process, not necessarily from natural selection alone		3
1	beditor: A computational workflow for designing libraries of guide RNAs for CRISPR-mediated base editin	g	1