
Christian Landry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years?. Journal of Evolutionary Biology, 2003, 16, 363-377.	0.8	786
2	An in Vivo Map of the Yeast Protein Interactome. Science, 2008, 320, 1465-1470.	6.0	681
3	A genome-wide view of the spectrum of spontaneous mutations in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9272-9277.	3.3	649
4	Genetic Properties Influencing the Evolvability of Gene Expression. Science, 2007, 317, 118-121.	6.0	310
5	Chromatin- and Transcription-Related Factors Repress Transcription from within Coding Regions throughout the Saccharomyces cerevisiae Genome. PLoS Biology, 2008, 6, e277.	2.6	268
6	Weak functional constraints on phosphoproteomes. Trends in Genetics, 2009, 25, 193-197.	2.9	254
7	Compensatory cis-trans Evolution and the Dysregulation of Gene Expression in Interspecific Hybrids of Drosophila. Genetics, 2005, 171, 1813-1822.	1.2	209
8	Alternative life histories shape brain gene expression profiles in males of the same population. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1655-1662.	1.2	188
9	Quantification of dynamic protein complexes using <i>Renilla</i> luciferase fragment complementation applied to protein kinase A activities <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16916-16921.	3.3	172
10	Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Molecular Ecology, 2002, 10, 2525-2539.	2.0	170
11	Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nature Microbiology, 2016, 1, 15003.	5.9	161
12	Genome clashes in hybrids: insights from gene expression. Heredity, 2007, 99, 483-493.	1.2	149
13	Molecular characterization of the evolution of phagosomes. Molecular Systems Biology, 2010, 6, 423.	3.2	139
14	Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene, 2006, 366, 343-351.	1.0	110
15	Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science, 2017, 355, 630-634.	6.0	103
16	The Calcineurin Signaling Network Evolves via Conserved Kinase-Phosphatase Modules that Transcend Substrate Identity. Molecular Cell, 2014, 55, 422-435.	4.5	102
17	Ecological and evolutionary genomics of Saccharomyces cerevisiae. Molecular Ecology, 2006, 15, 575-591.	2.0	94
18	Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus. PLoS Genetics, 2016, 12, e1006155.	1.5	94

#	Article	IF	CITATIONS
19	Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins. ELife, 2017, 6, .	2.8	93
20	The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila. Current Biology, 2016, 26, 3116-3128.	1.8	92
21	Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2594-2606.	1.8	88
22	Molecular mechanisms of paralogous compensation and the robustness of cellular networks. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 488-499.	0.6	83
23	Evolutionary biology through the lens of budding yeast comparative genomics. Nature Reviews Genetics, 2017, 18, 581-598.	7.7	81
24	Evidence of Natural Hybridization in Brazilian Wild Lineages of <i>Saccharomyces cerevisiae</i> . Genome Biology and Evolution, 2016, 8, 317-329.	1.1	79
25	Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnology for Biofuels, 2017, 10, 78.	6.2	78
26	What is needed for next-generation ecological and evolutionary genomics?. Trends in Ecology and Evolution, 2012, 27, 673-678.	4.2	77
27	Exploring the northern limit of the distribution of <i>Saccharomyces cerevisiae</i> and <i>Saccharomyces paradoxus</i> in North America. FEMS Yeast Research, 2014, 14, 281-288.	1.1	71
28	Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161458.	1.2	70
29	Local climatic adaptation in a widespread microorganism. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132472.	1.2	69
30	How Perfect Can Protein Interactomes Be?. Science Signaling, 2009, 2, pe11.	1.6	67
31	Key considerations for measuring allelic expression on a genomic scale using highâ€ŧhroughput sequencing. Molecular Ecology, 2010, 19, 212-227.	2.0	67
32	Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Molecular Ecology, 2014, 23, 4362-4372.	2.0	67
33	Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nature Communications, 2019, 10, 923.	5.8	62
34	TECHNICAL ADVANCE: Indel arrays: an affordable alternative for genotyping. Plant Journal, 2007, 51, 727-737.	2.8	58
35	Mitochondrial Recombination and Introgression during Speciation by Hybridization. Molecular Biology and Evolution, 2017, 34, 1947-1959.	3.5	57
36	Evolutionary rescue by compensatory mutations isÂconstrained by genomic and environmental backgrounds. Molecular Systems Biology, 2015, 11, 832.	3.2	56

#	Article	IF	CITATIONS
37	Systematic identification of signal integration by protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4501-4506.	3.3	53
38	Found in translation: functions and evolution of a recently discovered alternative proteome. Current Opinion in Structural Biology, 2015, 32, 74-80.	2.6	51
39	Compositional Differences between Size Classes of Dissolved Organic Matter from Freshwater and Seawater Revealed by an HPLC-FTIR System. Environmental Science & Technology, 2012, 46, 1700-1707.	4.6	50
40	Paralog dependency indirectly affects the robustness of human cells. Molecular Systems Biology, 2019, 15, e8871.	3.2	50
41	Extracting Insight from Noisy Cellular Networks. Cell, 2013, 155, 983-989.	13.5	49
42	Transcriptome sequences spanning key developmental states as a resource for the study of the cestode Schistocephalus solidus, a threespine stickleback parasite. GigaScience, 2016, 5, 24.	3.3	49
43	Spontaneous whole-genome duplication restores fertility in interspecific hybrids. Nature Communications, 2019, 10, 4126.	5.8	49
44	Perturbing proteomes at single residue resolution using base editing. Nature Communications, 2020, 11, 1871.	5.8	49
45	Moving from transcriptional to phospho-evolution: generalizing regulatory evolution?. Trends in Genetics, 2010, 26, 462-467.	2.9	48
46	Signaling Through Cooperation. Science, 2010, 328, 983-984.	6.0	46
47	A Systematic Approach for the Genetic Dissection of Protein Complexes in Living Cells. Cell Reports, 2013, 3, 2155-2167.	2.9	46
48	A Toolkit of Protein-Fragment Complementation Assays for Studying and Dissecting Large-Scale and Dynamic Protein–Protein Interactions in Living Cells. Methods in Enzymology, 2010, 470, 335-368.	0.4	45
49	Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics, 2005, 6, 158.	1.2	44
50	Hybridization and introgression drive genome evolution of Dutch elm disease pathogens. Nature Ecology and Evolution, 2020, 4, 626-638.	3.4	44
51	Turnover of protein phosphorylation evolving under stabilizing selection. Frontiers in Genetics, 2014, 5, 245.	1.1	43
52	Functional Divergence and Evolutionary Turnover in Mammalian Phosphoproteomes. PLoS Genetics, 2014, 10, e1004062.	1.5	41
53	The yeast galactose network as a quantitative model for cellular memory. Molecular BioSystems, 2015, 11, 28-37.	2.9	41
54	Evidence for the Robustness of Protein Complexes to Inter-Species Hybridization. PLoS Genetics, 2012, 8, e1003161.	1.5	39

4

#	Article	IF	CITATIONS
55	Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences. PLoS Computational Biology, 2014, 10, e1003977.	1.5	39
56	Turnover of ribosome-associated transcripts from de novo ORFs produces gene-like characteristics available for de novo gene emergence in wild yeast populations. Genome Research, 2019, 29, 932-943.	2.4	39
57	Cascading transcriptional effects of a naturally occurring frameshift mutation in <i>Saccharomyces cerevisiae</i> . Molecular Ecology, 2008, 17, 2985-2997.	2.0	37
58	qPCA: a scalable assay to measure the perturbation of protein–protein interactions in living cells. Molecular BioSystems, 2013, 9, 36-43.	2.9	37
59	Mitochondrial Recombination Reveals Mito–Mito Epistasis in Yeast. Genetics, 2018, 209, 307-319.	1.2	37
60	The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. ELife, 2019, 8, .	2.8	36
61	Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. Nature Communications, 2021, 12, 1597.	5.8	35
62	Phosphorylation network rewiring by gene duplication. Molecular Systems Biology, 2011, 7, 504.	3.2	32
63	Characterization of Spindle Checkpoint Kinase Mps1 Reveals Domain with Functional and Structural Similarities to Tetratricopeptide Repeat Motifs of Bub1 and BubR1 Checkpoint Kinases. Journal of Biological Chemistry, 2012, 287, 5988-6001.	1.6	32
64	<i>beditor</i> : A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. Genetics, 2019, 212, 377-385.	1.2	32
65	Protein-Fragment Complementation Assays for Large-Scale Analysis, Functional Dissection and Dynamic Studies of Protein–Protein Interactions in Living Cells. Methods in Molecular Biology, 2011, 756, 395-425.	0.4	30
66	Feedback regulation between autophagy and PKA. Autophagy, 2015, 11, 1181-1183.	4.3	30
67	The effect of hybridization on transposable element accumulation in an undomesticated fungal species. ELife, 2020, 9, .	2.8	29
68	Dissection of expressionâ€quantitative trait locus and allele specificity using a haploid/diploid plant system – insights into compensatory evolution of transcriptional regulation within populations. New Phytologist, 2016, 211, 159-171.	3.5	28
69	Expression attenuation as a mechanism of robustness against gene duplication. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
70	Transcriptional divergence plays a role in the rewiring of protein interaction networks after gene duplication. Journal of Proteomics, 2013, 81, 112-125.	1.2	26
71	Mitotic phosphotyrosine network analysis reveals that tyrosine phosphorylation regulates Polo-like kinase 1 (PLK1). Science Signaling, 2016, 9, rs14.	1.6	26
72	The Last Enzyme of the De Novo Purine Synthesis Pathway 5-aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC) Plays a Central Role in Insulin Signaling and the Golgi/Endosomes Protein Network*. Molecular and Cellular Proteomics, 2015, 14, 1079-1092.	2.5	25

#	Article	IF	CITATIONS
73	The neutral rate of whole-genome duplication varies among yeast species and their hybrids. Nature Communications, 2021, 12, 3126.	5.8	25
74	Genome-wide Protein-protein Interaction Screening by Protein-fragment Complementation Assay (PCA) in Living Cells. Journal of Visualized Experiments, 2015, , .	0.2	23
75	Major host transitions are modulated through transcriptomeâ€wide reprogramming events in <i>Schistocephalus solidus</i> , a threespine stickleback parasite. Molecular Ecology, 2017, 26, 1118-1130.	2.0	23
76	Population genomics reveals structure at the individual, hostâ€ŧree scale and persistence of genotypic variants of the undomesticated yeast <i>Saccharomyces paradoxus</i> in a natural woodland. Molecular Ecology, 2017, 26, 995-1007.	2.0	21
77	Identification of the fitness determinants of budding yeast on a natural substrate. ISME Journal, 2017, 11, 959-971.	4.4	21
78	Direct Phosphorylation of SRC Homology 3 Domains by Tyrosine Kinase Receptors Disassembles Ligand-Induced Signaling Networks. Molecular Cell, 2018, 70, 995-1007.e11.	4.5	21
79	Are longâ€lived trees poised for evolutionary change? Single locus effects in the evolution of gene expression networks in spruce. Molecular Ecology, 2013, 22, 2369-2379.	2.0	20
80	RNAseq Analysis Highlights Specific Transcriptome Signatures of Yeast and Mycelial Growth Phases in the Dutch Elm Disease Fungus <i>Ophiostoma novo-ulmi</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2487-2495.	0.8	20
81	Identification of candidate mimicry proteins involved in parasite-driven phenotypic changes. Parasites and Vectors, 2015, 8, 225.	1.0	20
82	Systems-level analysis and evolution of the phototransduction network in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3283-3288.	3.3	19
83	Double Selection Enhances the Efficiency of Target-AID and Cas9-Based Genome Editing in Yeast. G3: Genes, Genomes, Genetics, 2018, 8, 3163-3171.	0.8	19
84	Regulation plays a multifaceted role in the retention of gene duplicates. PLoS Biology, 2019, 17, e3000519.	2.6	19
85	Diverse perspectives on interdisciplinarity from Members of the College of the Royal Society of Canada. Facets, 2020, 5, 138-165.	1.1	19
86	Modulation of the yeast protein interactome in response to DNA damage. Journal of Proteomics, 2014, 100, 25-36.	1.2	18
87	Yeasts from temperate forests. Yeast, 2022, 39, 4-24.	0.8	18
88	Proteomic Characterization of Phagosomal Membrane Microdomains During Phagolysosome Biogenesis and Evolution. Molecular and Cellular Proteomics, 2012, 11, 1365-1377.	2.5	17
89	A Cellular Roadmap for the Plant Kingdom. Science, 2011, 333, 532-533.	6.0	16
90	Metabolic variation in natural populations of wild yeast. Ecology and Evolution, 2015, 5, 722-732.	0.8	16

#	Article	IF	CITATIONS
91	The Rapid Evolution of an Ohnolog Contributes to the Ecological Specialization of Incipient Yeast Species. Molecular Biology and Evolution, 2017, 34, 2173-2186.	3.5	16
92	The genomics of wild yeast populations sheds light on the domestication of man's best (micro) friend. Molecular Ecology, 2015, 24, 5309-5311.	2.0	15
93	The Genotype–Phenotype Maps of Systems Biology and Quantitative Genetics: Distinct and Complementary. Advances in Experimental Medicine and Biology, 2012, 751, 371-398.	0.8	14
94	Integrative avenues for exploring the dynamics and evolution of protein interaction networks. Current Opinion in Biotechnology, 2013, 24, 775-783.	3.3	14
95	The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasites and Vectors, 2021, 14, 436.	1.0	14
96	Yeast Population Genomics Goes Wild: The Case of Saccharomyces paradoxus. Population Genomics, 2017, , 207-230.	0.2	13
97	Systems biology spins off a new model for the study of canalization. Trends in Ecology and Evolution, 2009, 24, 63-66.	4.2	12
98	Extended Linkers Improve the Detection of Protein-protein Interactions (PPIs) by Dihydrofolate Reductase Protein-fragment Complementation Assay (DHFR PCA) in Living Cells. Molecular and Cellular Proteomics, 2018, 17, 373-383.	2.5	12
99	BUBR1 Pseudokinase Domain Promotes Kinetochore PP2A-B56 Recruitment, Spindle Checkpoint Silencing, and Chromosome Alignment. Cell Reports, 2020, 33, 108397.	2.9	12
100	Frequent Assembly of Chimeric Complexes in the Protein Interaction Network of an Interspecies Yeast Hybrid. Molecular Biology and Evolution, 2021, 38, 1384-1401.	3.5	11
101	SRC homology 3 domains: multifaceted binding modules. Trends in Biochemical Sciences, 2022, 47, 772-784.	3.7	11
102	A systems biology approach to explore the impact of maple tree dormancy release on sap variation and maple syrup quality. Scientific Reports, 2018, 8, 14658.	1.6	10
103	A collection of barcoded natural isolates of <i>Saccharomyces paradoxus</i> to study microbial evolutionary ecology. MicrobiologyOpen, 2019, 8, e773.	1.2	10
104	No evidence for extrinsic post-zygotic isolation in a wild <i>Saccharomyces</i> yeast system. Biology Letters, 2017, 13, 20170197.	1.0	9
105	Lachancea quebecensis sp. nov., a yeast species consistently isolated from tree bark in the Canadian province of Québec. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3392-3399.	0.8	9
106	Heterogeneous Mutation Rates and Spectra in Yeast Hybrids. Genome Biology and Evolution, 2021, 13, .	1.1	9
107	Multi-scale perturbations of protein interactomes reveal their mechanisms of regulation, robustness and insights into genotype–phenotype maps. Briefings in Functional Genomics, 2016, 15, 130-137.	1.3	8
108	Differences Between the Raw Material and the Products of de Novo Gene Birth Can Result from Mutational Biases. Genetics, 2019, 212, 1353-1366.	1.2	8

#	Article	IF	CITATIONS
109	Protein-Fragment Complementation Assays for Large-Scale Analysis, Functional Dissection, and Spatiotemporal Dynamic Studies of Protein–Protein Interactions in Living Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.top083543.	0.2	7
110	Testing the Genomic Shock Hypothesis Using Transposable Element Expression in Yeast Hybrids. Frontiers in Fungal Biology, 2021, 2, .	0.9	6
111	The Dihydrofolate Reductase Protein-Fragment Complementation Assay: A Survival-Selection Assay for Large-Scale Analysis of Protein–Protein Interactions. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090027.	0.2	5
112	Competition experiments in a soil microcosm reveal the impact of genetic and biotic factors on natural yeast populations. ISME Journal, 2020, 14, 1410-1421.	4.4	5
113	Interspecific hybrids show a reduced adaptive potential under DNA damaging conditions. Evolutionary Applications, 2021, 14, 758-769.	1.5	5
114	Purification of Yeast Spores to Investigate Their Dynamics of Activation. Current Protocols in Microbiology, 2020, 59, e123.	6.5	5
115	Chromatin regulators shape the genotype–phenotype map. Molecular Systems Biology, 2010, 6, 434.	3.2	4
116	Where Do Phosphosites Come from and Where Do They Go after Gene Duplication?. International Journal of Evolutionary Biology, 2012, 2012, 1-8.	1.0	4
117	When nuclearâ€encoded proteins and mitochondrial <scp>RNA</scp> s do not get along, species split apart. EMBO Reports, 2017, 18, 8-10.	2.0	4
118	The Canadian Fungal Research Network: current challenges and future opportunities. Canadian Journal of Microbiology, 2021, 67, 13-22.	0.8	4
119	Recent Advances in Ecological Genomics: From Phenotypic Plasticity to Convergent and Adaptive Evolution and Speciation. Advances in Experimental Medicine and Biology, 2014, 781, 1-5.	0.8	4
120	Barcode fusion genetics-protein-fragment complementation assay (BFG-PCA): tools and resources that expand the potential for binary protein interaction discovery. Nucleic Acids Research, 2022, 50, e54-e54.	6.5	4
121	Gene network architecture as a canvas for the interpretation of ecological genomics investigations. Molecular Ecology, 2010, 19, 5084-5085.	2.0	3
122	Combining the Dihydrofolate Reductase Protein-Fragment Complementation Assay with Gene Deletions to Establish Genotype-to-Phenotype Maps of Protein Complexes and Interaction Networks. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090035.	0.2	3
123	The Genome Sequence of the Jean-Talon Strain, an Archeological Beer Yeast from Québec, Reveals Traces of Adaptation to Specific Brewing Conditions. G3: Genes, Genomes, Genetics, 2020, 10, 3087-3097.	0.8	3
124	Closely related budding yeast species respond to different ecological signals for spore activation. Yeast, 2021, 38, 81-89.	0.8	3
125	Deep Mutational Scanning of Protein–Protein Interactions Between Partners Expressed from Their Endogenous Loci In Vivo. Methods in Molecular Biology, 2022, 2477, 237-259.	0.4	3
126	Yeast proteins do not practice social distancing as species hybridize. Current Genetics, 2021, 67, 755-759.	0.8	2

#	Article	IF	CITATIONS
127	Extended Linkers Improve the Detection of Protein-protein Interactions (PPIs) by Dihydrofolate Reductase Protein-fragment Complementation Assay (DHFR PCA) in Living Cells. Molecular and Cellular Proteomics, 2018, 17, 373-383.	2.5	1
128	Similarities in biological processes can be used to bridge ecology and molecular biology. Evolutionary Applications, 2020, 13, 1335-1350.	1.5	1
129	Molecular Dependency Impacts on the Compensating Ability of Paralogs: A Response to Veitia. Trends in Genetics, 2017, 33, 657-658.	2.9	1
130	Haploid transcriptome analysis reveals allelelic gene expression variants, co-expressed gene groups, and linkages between expression and copy number variation. BMC Proceedings, 2011, 5, .	1.8	0
131	Identifying features of genome evolution to exploit cancer vulnerabilities. Cell Systems, 2021, 12, 1127-1130.	2.9	0
132	High-Throughput Gene Mutagenesis Screening Using Base Editing. Methods in Molecular Biology, 2022, 2477, 331-348.	0.4	0