Sergio Caracciolo

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8630680/publications.pdf
Version: 2024-02-01

1 Polymers and g|ï†|4 theory in four dimensions. Nuclear Physics B, 1983, 215, 209-248.

```
Asymptotic Scaling in the Two-Dimensional O(3) Ïf Model at Correlation Length 105. Physical Review
2.9 Letters, 1995, 75, 1891-1894.
```

6 3d Ising Spin-Glasses in a Magnetic Field and Mean-Field Theory. Europhysics Letters, 1990, 11, 783-789.
$0.7 \quad 85$

7 A new Monte-Carlo approach to the critical properties of self-avoiding random walks. Journal De
Physique, 1983, 44, 323-331.
1.8

76

8 Wolff-type embedding algorithms for general nonlinear Ïf-models. Nuclear Physics B, 1993, 403, 475-541.
0.9

63

9 High-precision determination of the critical exponent $\hat{1} 3$ for self-avoiding walks. Physical Review E, 1998,
57, R1215-R1218.

10 The energy-momentum tensor for lattice gauge theories. Annals of Physics, 1990, 197, 119-153.
1.0

60
11 Low temperature behaviour of 3-D spin glasses in a magnetic field. Journal De Physique, 1990, 51,
1877-1895.
1.8

53

12 Nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints. Journal of Statistical
Physics, 1990, 60, 1-53.
0.5

50

13 Fermionic Field Theory for Trees and Forests. Physical Review Letters, 2004, 93, 080601.
2.9

50

14 Scaling hypothesis for the Euclidean bipartite matching problem. Physical Review E, 2014, 90, 012118.
0.8

50

> 15 Correction-to-Scaling Exponents for Two-Dimensional Self-Avoiding Walks. Journal of Statistical
> Physics, 2005, 120, 1037-1100.
0.5

45

Virial coefficients and osmotic pressure in polymer solutions in good-solvent conditions. Journal of Chemical Physics, 2006, 125, 094903.
1.2

17 Corrections to finite-size scaling in the latticeN-vector model forN=â^ž. Physical Review D, 1998, 58, .
1.6
19

Lattice perturbation theory for $\mathrm{O}(\mathrm{N})$-symmetric Ï f-models with general nearest-neighbour action (I).
0.9

Conventional perturbation theory. Nuclear Physics B, 1994, 420, 141-183.
31

Four-loop perturbative expansion for the lattice N-vector model. Nuclear Physics B, 1995, 455, 619-647.
0.9

31

Geometrical properties of two-dimensional interacting self-avoiding walks at the \hat{l}_{s}-point. Journal of
0.7

Physics A: Mathematical and Theoretical, 2011, 44, 115004.
30

23 The energy-momentum tensor on the lattice: The scalar case. Nuclear Physics B, 1988, 309, 612-624.
$0.9 \quad 28$

Dynamic critical exponent of some Monte Carlo algorithms for the self-avoiding walk. Journal of
Physics A, 1986, 19, L797-L805.
1.6

27

25 Scaling hypothesis for the Euclidean bipartite matching problem. II. Correlation functions. Physical
Review E, 2015, 91, 062125.
$0.8 \quad 25$

26 Finite-Size Scaling in the Driven Lattice Gas. Journal of Statistical Physics, 2004, 115, 281-322.
0.5

24

27 Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians.
Advances in Applied Mathematics, 2013, 50, 474-594.

Universal distance ratios for two-dimensonal self-avoiding walks: corrected conformal-invariance predictions. Journal of Physics A, 1990, 23, L969-L974.
1.6

23
\square31 End-to-end distribution function for dilute polymers. Journal of Chemical Physics, 2000, 112, 7693-7710.1.221

Join- and-cut algorithm for self-avoiding walks with variable length and free endpoints. Journal of
Statistical Physics, 1992, 67, 65-111.

Random walks with short-range interaction and mean-field behavior. Journal of Statistical Physics,
1994, 77, 519-543.
0.5

Asymptotically free models and discrete non-Abelian groups. Physics Letters, Section B: Nuclear,
Elementary Particle and High-Energy Physics, 2001, 513, 223-231.
1.5

Quadratic Stochastic Euclidean Bipartite Matching Problem. Physical Review Letters, 2015, 115, 230601.
2.9
0.9

Statistical Mechanics: Theory and Experiment, 2014, 2014, P11023.

Improved Migdal recursion formula for the Ising model in two dimensions on a triangular lattice.
Nuclear Physics B, 1981, 180, 405-416.

Phases of renormalized lattice gauge theories with fermions. Annals of Physics, 1979, 122, 74-101.
1.0

Effects of frustration on the orderings of multi-valued spin systems. Physics Letters, Section A:
$44 \quad$ Effects of frustration on the orderings of multi-valued spin sys
0.9

16

A quantitative analysis of the Migdal-Kadanoff renormalization scheme for $\operatorname{SU}(2)$ gauge theory.
Nuclear Physics B, 1981, 180, 428-438.

Comment on â€œDynamic Behavior of Anisotropic Nonequilibrium Driving Lattice Gasesâ€: Physical Review
Letters, 2004, 92, 029601; author reply 029602.

Grassmann integral representation for spanning hyperforests. Journal of Physics A: Mathematical and
Theoretical, 2007, 40, 13799-13835.

Third Virial Coefficient for 4â€Arm and 6â€Arm Star Polymers. Macromolecular Theory and Simulations, 2008, 17, 67-72.

49 Conservation laws for strings in the Abelian Sandpile Model. Europhysics Letters, 2010, 90, 60003.
0.7

15

Exact integration of height probabilities in the Abelian Sandpile model. Journal of Statistical
0.9

Mechanics: Theory and Experiment, 2012, 2012, P09013.

Title is missing!. Journal of Physics A, 1991, 24, 3625-3639.

1.6

14
51 Title is missing!. Journal of Physics A, 1991, 24, 3625-3639. 1.6 4
Two-loop critical mass for Wilson fermions. Physical Review D, 2001, 64, .
$59 \quad$ A general limitation on Monte Carlo algorithms of the Metropolis type. Physical Review Letters, 1994,
$72,179-182$.$2.9 \quad 12$
60 Shape dependence of the finite-size scaling limit in a strongly anisotropic \$mathsf\{O(infty)\}\$ model.0.612
European Physical Journal B, 2003, 34, 205-217.
1.2 1261 Polymer size in dilute solutions in the good-solvent regime. Journal of Chemical Physics, 2006, 125,094904.
Two-parameter model predictions and \hat{l}_{5} point crossover for linear-polymer solutions. Journal ofChemical Physics, 2008, 128, 065104.
63 Noncommutative determinants, Cauchy\–Binet formulae, and Capelli-type identities I.
Generalizations of the Capelli and Turnbull identities. Electronic Journal of Combinatorics, 2009, 16, 0.212
Monte Carlo test of a hyperscaling relation for the two-dimensional self-avoiding walk. Journal ofPhysics A, 1987, 20, 2569-2576.
1.611
Comparison between theoretical four-loop predictions and Monte Carlo calculations in the
65 two-dimensional N-vector model for $N=3,4,8$. Nuclear Physics, Section B, Proceedings Supplements, 0.5 11 1996, 47, 763-766.66 Critical behavior of the two-dimensional randomly driven lattice gas. Physical Review E, 2005, 72,0.811
056111.1.211Multiple and inverse topplings in the Abelian Sandpile Model. European Physical Journal: Special1.2Topics, 2012, 212, 23-44.Growth and form of melanoma cell colonies. Journal of Statistical Mechanics: Theory and
$73 \begin{aligned} & \text { Renormalization flow for unrooted forests on a triangular lattice. Nuclear Physics B, 2007, 787, } \\ & 260-282 \text {. }\end{aligned}$ 2,

Generalized Wolff-type embedding algorithms for nonlinear Ïf-models. Nuclear Physics, Section B, Proceedings Supplements, 1991, 20, 72-75.

Dynamic critical behavior of an extended reptation dynamics for self-avoiding walks. Physical Review
E, 2002, 65, 031106 .

Two-dimensional Heisenberg model with nonlinear interactions: corrections. Nuclear Physics B, 2005, 707, 458-492.

Random Euclidean matching problems in one dimension. Physical Review E, 2017, 96, 042102.
$0.8 \quad 9$

Solution for a bipartite Euclidean traveling-salesman problem in one dimension. Physical Review E, 2018, 97, 052109.

On computer simulations for spin glasses to test mean field predictions. Journal De Physique, I, 1991, 1, 627-628.

Dynamic critical exponent of the BFACF algorithm for self-avoiding walks. Journal of Statistical Physics, 1991, 63, 857-865.

Two-dimensional O(3) Ïf-model up to correlation length 105. Nuclear Physics, Section B, Proceedings
Supplements, 1995, 42, 752-754.

82 Spanning Forests on Random Planar Lattices. Journal of Statistical Physics, 2009, 135, 1063-1104.
0.5

8

Phase Diagram for a Ferromagnetic System with Potts Symmetry in Four Dimensions. Europhysics
Letters, 1987, 4, 7-14.
0.7

Monte Carlo test of a hyperscaling relation for the two-dimensional self-avoiding walk. II. Journal of Physics A, 1990, 23, 4509-4517.

Analytic determination at one loop of the energy-momentum tensor for lattice QCD. Physics Letters,
Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 260, 401-406.

86 Caraccioloet al.Reply:. Physical Review Letters, 1996, 76, 1179-1179.
2.9

Comparing different improvement programs for the N-vector model. Physics Letters, Section B:
Nuclear, Elementary Particle and High-Energy Physics, 1997, 402, 335-340.

Crossover scaling from classical to non-classical critical behaviour. Nuclear Physics, Section B,
Proceedings Supplements, 1999, 73, 757-762.

Operator product expansion on the lattice: a numerical test in the two-dimensional non-linear
sigma-model. Journal of High Energy Physics, 2000, 2000, 045-045.
1.6

Bogoliubov transformations and fermion condensates in lattice field theories. Annals of Physics,
2009, 324, 584-599.
Dynamic critical behaviour of Wolff's algorithm for RPN Ïf-models. Nuclear Physics, Section B,
Proceedings Supplements, 1992, 26, 595-597.

95	Exact value for the average optimal cost of the bipartite traveling salesman and two-factor problems in two dimensions. Physical Review E, 2018, 98, .	0.8	6	
96	The Dyck bound in the concave 1-dimensional random assignment model. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 064001.	0.7	6	
97	New universality classes for two-dimensional Ïf-models. Nuclear Physics, Section B, Proceedings Supplements, 1994, 34, 129-134.	0.5	5	
98	Analytic results for mixed $O(N)$-RPNâ^’ 1 Ï f-models in two dimensions. Nuclear Physics, Section B, Proceedings Supplements, 1994, 34, 683-685.	0.5	5	
99	A free action for pions as quark composites. Nuclear Physics B, 1998, 512, 505-519.	0.9	5	
100	Hyperforests on the complete hypergraph by Grassmann integral representation. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 205003.	0.7	5	
101	Diquarks in the nilpotency expansion of QCD and their role at finite chemical potential. Physical Review D, 2012, 85, .	1.6	5	
102	Spanning forests and<i>OSP<\|i>(<i>N<\|i>	<i>2M<\|i>)â€\%-invariant<i>Ïf<\|i>-models.Journal of Physics A: Mathematical and Theoretical, 2017, 50, 114001.	0.7	5
103	Universal Gaussian behavior of driven lattice gases at short times. Physical Review E, 2017, 96, 052136.	0.8	5	

109 High-precision computation of two-loop Feynman diagrams with Wilson fermions. Nuclear Physics, Section B, Proceedings Supplements, 1998, 63, 802-804.
Critical behaviour of spanning forests on random planar graphs. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 074003.

Plastic number and possible optimal solutions for an Euclidean 2-matching in one dimension. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 083402.
115 Random Assignment Problems on 2d Manifolds. Journal of Statistical Physics, 2021, 183, 1. 0.5
Phase transitions and renormalized structure of lattice gauge theories with fermions. PhysicsLetters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1978, 77, 275-278.
117 Bifurcations and convergence of the Martinelli-Parisi expansion in the 2d Potts model. Nuclear Physics B, 1985, 251, 50-60.
How to make a choice in the whole class of Martinelli-Parisi expansions for renormalization group transformations. Nuclear Physics B, 1985, 257, 77-84.
119 Selberg integrals in 1D random Euclidean optimization problems. Journal of Statistical Mechanics:
Theory and Experiment, 2019, 2019, 063401.
0.9 3
120 Criticality and conformality in the random dimer model. Physical Review E, 2021, 103, 042127.0.83
121 A success of the Martinelli-Parisi expansion: the crossover to first-order transition in the 2D Potts 1.6 2 model. Journal of Physics A, 1984, 17, 3533-3537.
Optimisation of the potential shifting in the Martinelli-Parisi expansion of the $Z(2)$ gauge theory on a 1.6 2
122 cubic lattice. Journal of Physics A, 1986, 19, 1229-1234.1.8
New method for the extrapolation of finite-size data to infinite volume. Nuclear Physics, Section B,
Proceedings Supplements, 1995, 42, 749-751.

Corrections to finite-size scaling in two-dimensional $\mathrm{O}(\mathrm{N})$ Ï f-models. Nuclear Physics, Section B,
How to compute one-loop Feynman diagrams in lattice QCD with Wilson fermions. Nuclear Physics,

Section B, Proceedings Supplements, 1997, 53, 794-796. | Use of even grassmann variables to construct effective actions for mesons. Nuclear Physics, Section |
| :--- |
| 130 B, Proceedings Supplements, 1998, 63, 790-792. |133 Phase transition in the spanning-hyperforest model on complete hypergraphs. Nuclear Physics B, 2009,

$822,493-516$.
134 Chiral symmetry breaking and quark confinement in the nilpotency expansion of QCD. Physical ReviewD, 2011, 83,
135 Transfer matrix for Kogut-Susskind fermions in the spin basis. Physical Review D, 2013, 87, 1.6 2
 1.0 2
137 Deterministic Abelian Sandpile and Square-Triangle Tilings. Springer INdAM Series, 2015, , 127-136. 0.4 2
Accurate results for the near critical properties of the Ising and non-linear Ïf-models by theintroduction of a potential shift. Nuclear Physics B, 1983, 225, 466-474.
139
The energy-momentum tensor on the lattice. Nuclear Physics, Section B, Proceedings Supplements,0.51
One loop conserved energy momentum tensor for lattice QCD. Nuclear Physics, Section B,0.5Proceedings Supplements, 1991, 20, 36-39.Replica symmetry breaking and Monte Carlo simulations for spin glasses. Physica A: Statistical

145	Noncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities II. Grassmann and quantum oscillator algebra representation. Annales De L'Institut Henri Poincare (D) Combinatorics, Physics and Their Interactions, 2014, 1, 1-46.	0.6	1
146	Current quantization and fractal hierarchy in a driven repulsive lattice gas. Physical Review E, 2017, 96, 052141.	0.8	1
147	Average optimal cost for the Euclidean TSP in one dimension. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 264003.	0.7	1
148	The Number of Optimal Matchings for Euclidean Assignment on the Line. Journal of Statistical Physics, 2021, 183, 1.	0.5	1
149	From Lattice Gauge Theory Towards Gravity. NATO ASI Series Series B: Physics, 1990, , 37-54.	0.2	1
150	Ising spin-glasses in a magnetic field in 3 dimensions. Nuclear Physics, Section B, Proceedings Supplements, 1990, 17, 577-580.	0.5	0
151	The trace anomaly and the energy momentum tensor in lattice gauge theories. Nuclear Physics, Section B, Proceedings Supplements, 1990, 16, 557-558.	0.5	0
152	Analytic determination of dimension-4 composite operators in QCD. Nuclear Physics, Section B, Proceedings Supplements, 1992, 26, 409-411.	0.5	0
153	Improved actions for the two-dimensional Ïf-model. Nuclear Physics, Section B, Proceedings Supplements, 1998, 63, 916-918.	0.5	0

