Anton van den Hengel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8630461/anton-van-den-hengel-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 7,078 172 44 h-index g-index citations papers 6.63 185 9,375 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
172	Video Super-Resolution via Mixed Spatial-Temporal Convolution and Selective Fusion. <i>Pattern Recognition</i> , 2022 , 126, 108577	7.7	Ο
171	Learning to Zoom-In via Learning to Zoom-Out: Real-World Super-Resolution by Generating and Adapting Degradation. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 2947-2962	8.7	5
170	. IEEE Transactions on Multimedia, 2021 , 23, 2481-2492	6.6	6
169	. IEEE Transactions on Multimedia, 2021 , 1-1	6.6	
168	Medical Data Inquiry Using a Question Answering Model 2020 ,		2
167	Multi-way backpropagation for training compact deep neural networks. <i>Neural Networks</i> , 2020 , 126, 250-261	9.1	13
166	Learning Deep Gradient Descent Optimization for Image Deconvolution. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 5468-5482	10.3	20
165	Towards Effective Deep Embedding for Zero-Shot Learning. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2020 , 30, 2843-2852	6.4	13
164	Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision. <i>Lecture Notes in Computer Science</i> , 2020 , 580-599	0.9	13
163	Object-and-Action Aware Model for Visual Language Navigation. <i>Lecture Notes in Computer Science</i> , 2020 , 303-317	0.9	5
162	Adaptive Importance Learning for Improving Lightweight Image Super-Resolution Network. <i>International Journal of Computer Vision</i> , 2020 , 128, 479-499	10.6	15
161	Accurate Tensor Completion via Adaptive Low-Rank Representation. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 4170-4184	10.3	4
160	Scripted Video Generation With a Bottom-Up Generative Adversarial Network. <i>IEEE Transactions on Image Processing</i> , 2020 , 29, 7454-7467	8.7	4
159	GADE: A Generative Adversarial Approach to Density Estimation and its Applications. <i>International Journal of Computer Vision</i> , 2020 , 128, 2731-2743	10.6	0
158	2020,		37
157	REVERIE: Remote Embodied Visual Referring Expression in Real Indoor Environments 2020,		19
156	Counterfactual Vision and Language Learning 2020 ,		16

155	On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering 2020 ,		14
154	REFUGEIChallenge: A unified framework for evaluating automatedImethods for glaucomalassessment from fundus photographs. <i>Medical Image Analysis</i> , 2020 , 59, 101570	15.4	147
153	Accurate imagery recovery using a multi-observation patch model. <i>Information Sciences</i> , 2019 , 501, 724	4-7 /1/ 1	
152	Unsupervised Domain Adaptation Using Robust Class-Wise Matching. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2019 , 29, 1339-1349	6.4	29
151	Deep Anomaly Detection with Deviation Networks 2019 ,		55
150	How Might Autonomous Vehicles Impact the City? The Case of Commuting to Central Adelaide. <i>Urban Policy and Research</i> , 2019 , 37, 442-457	1.6	10
149	Reinforcement Learning with Attention that Works: A Self-Supervised Approach. <i>Communications in Computer and Information Science</i> , 2019 , 223-230	0.3	6
148	Using Digital Visualization of Archival Sources to Enhance Archaeological Interpretation of the life Historylof Ships: The Case Study of HMCS/HMAS Protector. <i>Coastal Research Library</i> , 2019 , 89-101	0.4	2
147	Attention-Guided Network for Ghost-Free High Dynamic Range Imaging 2019 ,		56
146	Actively Seeking and Learning From Live Data 2019 ,		4
145	Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection 2019 ,		250
144	What's to Know? Uncertainty as a Guide to Asking Goal-Oriented Questions 2019,		4
144	What's to Know? Uncertainty as a Guide to Asking Goal-Oriented Questions 2019, 2019,		4
		6.9	
143	2019, High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum	6.9 7.7	3
143	2019, High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare). <i>Plant Journal</i> , 2019, 98, 555-570 Wider or Deeper: Revisiting the ResNet Model for Visual Recognition. <i>Pattern Recognition</i> , 2019,		3
143 142 141	2019, High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare). <i>Plant Journal</i> , 2019, 98, 555-570 Wider or Deeper: Revisiting the ResNet Model for Visual Recognition. <i>Pattern Recognition</i> , 2019, 90, 119-133 MPTV: Matching Pursuit-Based Total Variation Minimization for Image Deconvolution. <i>IEEE</i>	7.7	3 9 353

137	An Embarrassingly Simple Approach to Visual Domain Adaptation. <i>IEEE Transactions on Image Processing</i> , 2018 , 27, 3403-3417	8.7	57
136	. IEEE Transactions on Circuits and Systems for Video Technology, 2018 , 28, 1358-1368	6.4	43
135	Image Captioning and Visual Question Answering Based on Attributes and External Knowledge. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2018 , 40, 1367-1381	13.3	147
134	Exploring Context with Deep Structured Models for Semantic Segmentation. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2018 , 40, 1352-1366	13.3	45
133	Goal-Oriented Visual Question Generation via Intermediate Rewards. <i>Lecture Notes in Computer Science</i> , 2018 , 189-204	0.9	7
132	Visual Question Answering as a Meta Learning Task. Lecture Notes in Computer Science, 2018, 229-245	0.9	8
131	Vision-and-Language Navigation: Interpreting Visually-Grounded Navigation Instructions in Real Environments 2018 ,		170
130	Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge 2018 ,		91
129	Large-Scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2017 , 39, 470-485	13.3	21
128	. IEEE Transactions on Circuits and Systems for Video Technology, 2017 , 27, 1235-1248	6.4	9
127	Learning discriminative trajectorylet detector sets for accurate skeleton-based action recognition. <i>Pattern Recognition</i> , 2017 , 66, 202-212	7.7	36
126	Compositional Model Based Fisher Vector Coding for Image Classification. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2017 , 39, 2335-2348	13.3	35
125	A hierarchical model for recognizing alarming states in a batteryless sensor alarm intervention for preventing falls in older people. <i>Pervasive and Mobile Computing</i> , 2017 , 40, 1-16	3.5	7
124	Visual question answering: A survey of methods and datasets. <i>Computer Vision and Image Understanding</i> , 2017 , 163, 21-40	4.3	108
123	Deep linear discriminant analysis on fisher networks: A hybrid architecture for person re-identification. <i>Pattern Recognition</i> , 2017 , 65, 238-250	7.7	132
122	Cross-Convolutional-Layer Pooling for Image Recognition. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2017 , 39, 2305-2313	13.3	44
121	Structured learning of metric ensembles with application to person re-identification. <i>Computer Vision and Image Understanding</i> , 2017 , 156, 51-65	4.3	7
120	Mining Mid-level Visual Patterns with Deep CNN Activations. <i>International Journal of Computer Vision</i> , 2017 , 121, 344-364	10.6	26

119	. IEEE Signal Processing Magazine, 2017 , 34, 63-75	9.4	18
118	Sequential Person Recognition in Photo Albums with a Recurrent Network 2017 ,		9
117	Graph-Structured Representations for Visual Question Answering 2017,		125
116	From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur 2017 ,		129
115	The VQA-Machine: Learning How to Use Existing Vision Algorithms to Answer New Questions 2017,		30
114	When Unsupervised Domain Adaptation Meets Tensor Representations 2017,		39
113	Multi-attention Network for One Shot Learning 2017 ,		37
112	Self-Paced Kernel Estimation for Robust Blind Image Deblurring 2017,		13
111	Scaling CNNs for High Resolution Volumetric Reconstruction from a Single Image 2017,		17
110	Infinite Variational Autoencoder for Semi-Supervised Learning 2017,		16
109	Explicit Knowledge-based Reasoning for Visual Question Answering 2017,		35
108	Large-Scale Camera Network Topology Estimation by Lighting Variation. <i>Lecture Notes in Computer Science</i> , 2017 , 455-467	0.9	
107	Semantic Labeling of Aerial and Satellite Imagery. <i>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</i> , 2016 , 9, 2868-2881	4.7	82
106	Pairwise Matching through Max-Weight Bipartite Belief Propagation 2016,		22
105	Online unsupervised feature learning for visual tracking. <i>Image and Vision Computing</i> , 2016 , 51, 84-94	3.7	11
104	Fast Detection of Multiple Objects in Traffic Scenes With a Common Detection Framework. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2016 , 17, 1002-1014	6.1	61
103	Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 1243-57	13.3	76
102	Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference. <i>International Journal of Computer Vision</i> , 2016 , 117, 269-289	10.6	2

101	Cluster Sparsity Field for Hyperspectral Imagery Denoising. <i>Lecture Notes in Computer Science</i> , 2016 , 631-647	0.9	10
100	Image Co-localization by Mimicking a Good Detector Confidence Score Distribution. <i>Lecture Notes in Computer Science</i> , 2016 , 19-34	0.9	14
99	Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. <i>Sensors</i> , 2016 , 16,	3.8	20
98	What Value Do Explicit High Level Concepts Have in Vision to Language Problems? 2016,		194
97	Less is More: Zero-Shot Learning from Online Textual Documents with Noise Suppression 2016,		67
96	Ask Me Anything: Free-Form Visual Question Answering Based on Knowledge from External Sources 2016 ,		126
95	Dictionary Learning for Promoting Structured Sparsity in Hyperspectral Compressive Sensing. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2016 , 54, 7223-7235	8.1	35
94	Guaranteed Ellipse Fitting with a Confidence Region and an Uncertainty Measure for Centre, Axes, and Orientation. <i>Journal of Mathematical Imaging and Vision</i> , 2015 , 52, 173-199	1.6	31
93	Supervised hashing using graph cuts and boosted decision trees. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2015 , 37, 2317-31	13.3	63
92	Enforcing consistency constraints in uncalibrated multiple homography estimation using latent variables. <i>Machine Vision and Applications</i> , 2015 , 26, 401-422	2.8	4
91	Worst case linear discriminant analysis as scalable semidefinite feasibility problems. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 2382-92	8.7	6
90	Hashing on nonlinear manifolds. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 1839-51	8.7	109
89	Image-Based Recommendations on Styles and Substitutes 2015 ,		597
88	The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification 2015 ,		86
87	Efficient SDP inference for fully-connected CRFs based on low-rank decomposition 2015,		5
86	Learning graph structure for multi-label image classification via clique generation 2015,		18
85	Part-based modelling of compound scenes from images 2015,		5
84	Robust multiple homography estimation: An ill-solved problem 2015 ,		8

83	Learning to rank in person re-identification with metric ensembles 2015 ,		249
82	Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs 2015 ,		17
81	Mid-level deep pattern mining 2015 ,		45
80	Camera Network Topology Estimation by Lighting Variation 2015,		1
79	A Study of the Region Covariance Descriptor: Impact of Feature Selection and Image Transformations 2015 ,		4
78	A Hybrid Loss for Multiclass and Structured Prediction. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2015 , 37, 2-12	13.3	1
77	A Model-Based Approach to Recovering the Structure of a Plant from Images. <i>Lecture Notes in Computer Science</i> , 2015 , 215-230	0.9	5
76	Characterness: an indicator of text in the wild. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 1666-77	8.7	60
75	A scalable stagewise approach to large-margin multiclass loss-based boosting. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2014 , 25, 1002-13	10.3	10
74	StructBoost: Boosting Methods for Predicting Structured Output Variables. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2014 , 36, 2089-103	13.3	10
73	. IEEE Transactions on Multimedia, 2014 , 16, 1254-1267	6.6	2
72	Efficient dual approach to distance metric learning. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2014 , 25, 394-406	10.3	30
71	Fast approximate . Computational Statistics and Data Analysis, 2014, 77, 25-37	1.6	13
70	RandomBoost: simplified multiclass boosting through randomization. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2014 , 25, 764-79	10.3	6
69	Fast Supervised Hashing with Decision Trees for High-Dimensional Data 2014 ,		219
68	Sampson distance based joint estimation of multiple homographies with uncalibrated cameras. <i>Computer Vision and Image Understanding</i> , 2014 , 125, 200-213	4.3	11
67	Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features. <i>Lecture Notes in Computer Science</i> , 2014 , 546-561	0.9	78
66	Large-Scale Camera Topology Mapping: Application to Re-identification 2014 , 391-411		2

65	On the Dimension of the Set of Two-View Multi-Homography Matrices. <i>Complex Analysis and Operator Theory</i> , 2013 , 7, 465-484	0.7	5
64	Fully corrective boosting with arbitrary loss and regularization. <i>Neural Networks</i> , 2013 , 48, 44-58	9.1	4
63	Spatially aware feature selection and weighting for object retrieval. <i>Image and Vision Computing</i> , 2013 , 31, 935-948	3.7	3
62	Approximate least trimmed sum of squares fitting and applications in image analysis. <i>IEEE Transactions on Image Processing</i> , 2013 , 22, 1836-47	8.7	21
61	A Fast Semidefinite Approach to Solving Binary Quadratic Problems 2013,		17
60	Visual tracking with spatio-temporal Dempster-Shafer information fusion. <i>IEEE Transactions on Image Processing</i> , 2013 , 22, 3028-40	8.7	51
59	Training Effective Node Classifiers for Cascade Classification. <i>International Journal of Computer Vision</i> , 2013 , 103, 326-347	10.6	22
58	A survey of appearance models in visual object tracking. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2013 , 4, 1-48	8	374
57	Incremental learning of 3D-DCT compact representations for robust visual tracking. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2013 , 35, 863-81	13.3	73
56	. IEEE Transactions on Multimedia, 2013 , 15, 1174-1183	6.6	19
55	Extended depth-of-field via focus stacking and graph cuts 2013,		4
54	Learning Compact Binary Codes for Visual Tracking 2013 ,		51
53	Inductive Hashing on Manifolds 2013 ,		149
52	Leveraging surrounding context for scene text detection 2013,		10
51	A General Two-Step Approach to Learning-Based Hashing 2013 ,		101
50	Bilinear Programming for Human Activity Recognition with Unknown MRF Graphs 2013,		19
49	Part-Based Visual Tracking with Online Latent Structural Learning 2013,		132
48	Fast Training of Effective Multi-class Boosting Using Coordinate Descent Optimization. <i>Lecture Notes in Computer Science</i> , 2013 , 782-795	0.9	

47	Non-sparse linear representations for visual tracking with online reservoir metric learning 2012,		11
46	Efficient computation of robust weighted low-rank matrix approximations using the L1 norm. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 1681-90	13.3	57
45	Sharing features in multi-class boosting via group sparsity 2012 ,		5
44	A Comparison of Ellipse Fitting Methods and Implications for Multiple-View Geometry Estimation 2012 ,		6
43	Robust Tracking with Weighted Online Structured Learning. <i>Lecture Notes in Computer Science</i> , 2012 , 158-172	0.9	17
42	Guaranteed Ellipse Fitting with the Sampson Distance. Lecture Notes in Computer Science, 2012, 87-100	0.9	17
41	Is face recognition really a Compressive Sensing problem? 2011,		170
40	A dimensionality result for multiple homography matrices 2011 ,		5
39	Graph mode-based contextual kernels for robust SVM tracking 2011 ,		28
38	Toward a Digital Ecosystem: International Symposium on Ubiquitous Virtual Reality 2010. <i>IEEE Pervasive Computing</i> , 2011 , 10, 90-93	1.3	
37	Distributed Camera Overlap Estimation Enabling Large Scale Surveillance. <i>Studies in Computational Intelligence</i> , 2011 , 147-182	0.8	
36	Image Retrieval with a Visual Thesaurus 2010 ,		1
35	Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm 2010 ,		35
34	Multiple Homography Estimation with Full Consistency Constraints 2010,		7
33	Image-Based Modelling for Augmenting Reality 2010 ,		1
32	Interactive modelling for AR applications 2010 ,		17
31	A framework for determining overlap in large scale networks 2009 ,		2
30	Optimization on the manifold of multiple homographies 2009,		4

29	Multi-projective Parameter Estimation for Sets of Homogeneous Matrices 2009,		2
28	Contradiction and Correlation for Camera Overlap Estimation 2009,		1
27	Tracking hand-off in large surveillance networks 2009 ,		3
26	In situ image-based modeling 2009 ,		18
25	Measuring Latency for Video Surveillance Systems 2009 ,		18
24	Surprisal-aware scheduling of PTZ cameras 2009 ,		2
23	Automatic camera placement for large scale surveillance networks 2009,		12
22	. IEEE Distributed Systems Online, 2008 , 9, 1-1		21
21	Empirical evaluation of the exclusion approach to estimating camera overlap 2008,		8
20	Estimating camera overlap in large and growing networks 2008,		9
19	Image based modelling with VideoTrace. Computer Graphics, 2008, 42, 1-8		
18	Fast global kernel density mode seeking: applications to localization and tracking. <i>IEEE Transactions on Image Processing</i> , 2007 , 16, 1457-69	8.7	50
17	Topology Estimation for Thousand-Camera Surveillance Networks 2007,		19
16	Thrift: Local 3D Structure Recognition 2007 ,		58
15	VideoTrace. ACM Transactions on Graphics, 2007 , 26, 86	7.6	81
14	VideoTrace 2007 ,		27
13	An Adaptive Bayesian Technique for Tracking Multiple Objects. <i>Lecture Notes in Computer Science</i> , 2007 , 657-665	0.9	0
12	Determining the Translational Speed of a Camera from Time-Varying Optical Flow. <i>Lecture Notes in Computer Science</i> , 2007 , 190-197	0.9	3

LIST OF PUBLICATIONS

11	Generalised Principal Component Analysis: Exploiting Inherent Parameter Constraints. Communications in Computer and Information Science, 2007, 217-228	1
10	Finding Camera Overlap in Large Surveillance Networks. <i>Lecture Notes in Computer Science</i> , 2007 , 375-3849	9
9	Middleware for video surveillance networks 2006,	10
8	Activity Topology Estimation for Large Networks of Cameras 2006,	16
7	Scalable Surveillance Software Architecture 2006 ,	6
6	FNS, CFNS and HEIV: A Unifying Approach. <i>Journal of Mathematical Imaging and Vision</i> , 2005 , 23, 175-1836	18
5	A new constrained parameter estimator for computer vision applications. <i>Image and Vision Computing</i> , 2004 , 22, 85-91	21
4	From FNS to HEIV: a link between two vision parameter estimation methods. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2004 , 26, 264-8	28
3	Rationalising the Renormalisation Method of Kanatani. <i>Journal of Mathematical Imaging and Vision</i> , 2001 , 14, 21-38	35
2	Is covariance information useful in estimating vision parameters? 2000 , 4309, 195	2
1	Dual-Attention-Guided Network for Ghost-Free High Dynamic Range Imaging. <i>International Journal of Computer Vision</i> ,1	ó 1