Mohamad Hmadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630219/publications.pdf

Version: 2024-02-01

35 papers 4,532 citations

25 h-index 425179 34 g-index

37 all docs

37 docs citations

37 times ranked

7906 citing authors

#	Article	IF	CITATIONS
1	Surface thermodynamics and Lewis acid-base properties of metal-organic framework Crystals by Inverse gas chromatography at infinite dilution. Journal of Chromatography A, 2022, 1666, 462849.	1.8	10
2	Metallated Isoindigo–Porphyrin Covalent Organic Framework Photocatalyst with a Narrow Band Gap for Efficient CO ₂ Conversion. ACS Applied Materials & Interfaces, 2022, 14, 2015-2022.	4.0	31
3	Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process. Nano Research, 2021, 14, 423-431.	5.8	17
4	Metal-organic framework photocatalysts for carbon dioxide reduction., 2021,, 389-420.		0
5	Efficient biofuel production by MTV-UiO-66 based catalysts. Chemical Engineering Journal, 2021, 410, 128237.	6.6	13
6	Structural engineering of Zr-based metal-organic framework catalysts for optimized biofuel additives production. Chemical Engineering Journal, 2020, 382, 122793.	6.6	27
7	Lanthanides based metal organic frameworks for luminescence sensing of toxic metal ions. Journal of Solid State Chemistry, 2020, 281, 121031.	1.4	24
8	Tuning the structural properties of cadmium–aluminum layered double hydroxide for enhanced photocatalytic dye degradation. RSC Advances, 2020, 10, 43066-43074.	1.7	11
9	Defect Control in Zr-Based Metal–Organic Framework Nanoparticles for Arsenic Removal from Water. ACS Applied Nano Materials, 2020, 3, 8997-9008.	2.4	96
10	Two-Dimensional Metal–Organic Framework Nanosheets as a Dual Ratiometric and Turn-off Luminescent Probe. Inorganic Chemistry, 2019, 58, 10912-10919.	1.9	34
11	Liesegang Banding for Controlled Size and Growth of Zeoliticâ€lmidazolate Frameworks. Small, 2019, 15, e1901605.	5.2	33
12	Metal–Organic Framework Photocatalyst Incorporating Bis(4′-(4-carboxyphenyl)-terpyridine)ruthenium(II) for Visible-Light-Driven Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 7115-7121.	6.6	125
13	Tuning acidity in zirconium-based metal organic frameworks catalysts for enhanced production of butyl butyrate. Applied Catalysis A: General, 2019, 570, 31-41.	2.2	36
14	Highly Efficient Ambient Temperature CO ₂ Photomethanation Catalyzed by Nanostructured RuO ₂ on Silicon Photonic Crystal Support. Advanced Energy Materials, 2018, 8, 1702277.	10.2	58
15	Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. Journal of the American Chemical Society, 2018, 140, 1812-1823.	6.6	496
16	A highly stable indium based metal organic framework for efficient arsenic removal from water. Dalton Transactions, 2018, 47, 799-806.	1.6	69
17	Enhancing porphyrin photostability when locked in metal–organic frameworks. Dalton Transactions, 2018, 47, 15765-15771.	1.6	24
18	Metal–Organic Framework-74 for Ultratrace Arsenic Removal from Water: Experimental and Density Functional Theory Studies. ACS Applied Nano Materials, 2018, 1, 3283-3292.	2.4	53

#	Article	IF	Citations
19	Postmetalated Zirconium Metal Organic Frameworks as a Highly Potent Bactericide. Inorganic Chemistry, 2017, 56, 4739-4744.	1.9	43
20	Synthesis, size and structural evolution of metal–organic framework-199 via a reaction–diffusion process at room temperature. CrystEngComm, 2017, 19, 608-612.	1.3	33
21	Cadmium–Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO ₂ Reduction. ChemSusChem, 2016, 9, 800-805.	3.6	30
22	Photocatalytic Properties of All Four Polymorphs of Nanostructured Iron Oxyhydroxides. ChemNanoMat, 2016, 2, 1047-1054.	1.5	38
23	Visible and Nearâ€Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO ₂ over Nanostructured Pd@Nb ₂ O ₅ . Advanced Science, 2016, 3, 1600189.	5.6	133
24	Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chemistry, 2016, 212, 485-494.	4.2	157
25	New Hydrogenâ€Evolution Heteronanostructured Photocatalysts: Ptâ€Nb ₃ O ₇ (OH) and Cuâ€Nb ₃ O ₇ (OH). ChemSusChem, 2017, 2104-2109.	.43.6	19
26	A Supramolecular Photosynthetic Model Made of a Multiporphyrinic Array Constructed around a C ₆₀ Core and a C ₆₀ –Imidazole Derivative. Chemistry - A European Journal, 2014, 20, 223-231.	1.7	50
27	New Porous Crystals of Extended Metal-Catecholates. Chemistry of Materials, 2012, 24, 3511-3513.	3.2	618
28	Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science, 2012, 336, 1018-1023.	6.0	1,729
29	Metal–Organic Frameworks Incorporating Copperâ€Complexed Rotaxanes. Angewandte Chemie - International Edition, 2012, 51, 2160-2163.	7.2	105
30	Electrostatic Barriers in Rotaxanes and Pseudorotaxanes. Chemistry - A European Journal, 2011, 17, 6076-6087.	1.7	68
31	On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer. Journal of Materials Chemistry, 2010, 20, 3422.	6.7	59
32	Acidâ^'Base Actuation of [<i>c</i> 2]Daisy Chains. Journal of the American Chemical Society, 2009, 131, 7126-7134.	6.6	195
33	Redox-driven switching in pseudorotaxanes. New Journal of Chemistry, 2009, 33, 254.	1.4	49
34	Synthesis, characterization and photophysical properties of benzidine-based compounds. Tetrahedron, 2008, 64, 6522-6529.	1.0	19
35	Control of Particle Size and Morphology of MOF-199 Crystals via a Reaction-Diffusion Framework. Defect and Diffusion Forum, 0, 380, 39-47.	0.4	6