
C Neal Stewart Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Miniâ€synplastomes for plastid genetic engineering. Plant Biotechnology Journal, 2022, 20, 360-373.	8.3	14
2	Kinaseâ€dead mutation: A novel strategy for improving soybean resistance to soybean cyst nematode <i>Heterodera glycines</i> . Molecular Plant Pathology, 2022, 23, 417-430.	4.2	9
3	High-Throughput Transfection and Analysis of Soybean (Glycine max) Protoplasts. Methods in Molecular Biology, 2022, 2464, 245-259.	0.9	1
4	Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.)) Tj ETQq0 0 0 rgBT	- /Overlock	18 Tf 50 622

5	Specific Bacterial Pathogen Phytosensing Is Enabled by a Synthetic Promoter-Transcription Factor System in Potato. Frontiers in Plant Science, 2022, 13, 873480.	3.6	5
6	The Genetic Architecture of Nitrogen Use Efficiency in Switchgrass (Panicum virgatum L.). Frontiers in Plant Science, 2022, 13, 893610.	3.6	0
7	Imaging of multiple fluorescent proteins in canopies enables synthetic biology in plants. Plant Biotechnology Journal, 2021, 19, 830-843.	8.3	16
8	Rational design and testing of abiotic stressâ€inducible synthetic promoters from poplar <i>cis</i> â€regulatory elements. Plant Biotechnology Journal, 2021, 19, 1354-1369.	8.3	27
9	Cellâ€Type‧pecific Proteomics Analysis of a Small Number of Plant Cells by Integrating Laser Capture Microdissection with a Nanodroplet Sample Processing Platform. Current Protocols, 2021, 1, e153.	2.9	17
10	Proteinase inhibitors in legume herbivore defense: from natural to genetically engineered protectants. Plant Cell Reports, 2021, , 1.	5.6	6
11	Novel Candidate Genes Differentially Expressed in Glyphosate-Treated Horseweed (Conyza canadensis). Genes, 2021, 12, 1616.	2.4	1
12	Songwriting and science. Science, 2021, , .	12.6	0
12		12.6 3.5	0
	Songwriting and science. Science, 2021, , . Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum) Using UAV-Based		
13	Songwriting and science. Science, 2021, , . Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum) Using UAV-Based Imagery. Plants, 2021, 10, 2726. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into	3.5	7
13 14	Songwriting and science. Science, 2021, , . Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum) Using UAV-Based Imagery. Plants, 2021, 10, 2726. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Reports, 2020, 39, 245-257. A Robust Method to Quantify Cell Wall Bound Phenolics in Plant Suspension Culture Cells Using	3.5 5.6	7 66
13 14 15	Songwriting and science. Science, 2021, , . Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum) Using UAV-Based Imagery. Plants, 2021, 10, 2726. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Reports, 2020, 39, 245-257. A Robust Method to Quantify Cell Wall Bound Phenolics in Plant Suspension Culture Cells Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Frontiers in Plant Science, 2020, 11, 574016. Lighting the Way: Advances in Engineering Autoluminescent Plants. Trends in Plant Science, 2020, 25,	3.5 5.6 3.6	7 66 3

2020, 11, 574073.

#	Article	IF	CITATIONS
19	Plants to Remotely Detect Human Decomposition?. Trends in Plant Science, 2020, 25, 947-949.	8.8	9
20	Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Scientific Reports, 2020, 10, 21144.	3.3	10
21	Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. New Phytologist, 2020, 227, 168-184.	7.3	27
22	Silencing Folylpolyglutamate Synthetase1 (FPGS1) in Switchgrass (Panicum virgatum L.) Improves Lignocellulosic Biofuel Production. Frontiers in Plant Science, 2020, 11, 843.	3.6	6
23	Development and field assessment of transgenic hybrid switchgrass for improved biofuel traits. Euphytica, 2020, 216, 1.	1.2	8
24	The Q-System as a Synthetic Transcriptional Regulator in Plants. Frontiers in Plant Science, 2020, 11, 245.	3.6	19
25	Development and validation of a novel and robust cell culture system in soybean (Glycine max (L.)) Tj ETQq1 1 0.	784314 r 5.6	gBT/Overlock
26	MoChlo: A Versatile, Modular Cloning Toolbox for Chloroplast Biotechnology. Plant Physiology, 2019, 179, 943-957.	4.8	36
27	Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnology for Biofuels, 2019, 12, 15.	6.2	47
28	Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit?. Annual Review of Phytopathology, 2019, 57, 165-188.	7.8	64
29	Transcriptomic Analysis Identifies New Non-Target Site Glyphosate-Resistance Genes in Conyza bonariensis. Plants, 2019, 8, 157.	3.5	31
30	An exposure pathwayâ€based risk assessment system for <scp>GM</scp> plants. Plant Biotechnology Journal, 2019, 17, 1859-1861.	8.3	2
31	Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. International Journal of Molecular Sciences, 2019, 20, 1086.	4.1	86
32	Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.). Biotechnology for Biofuels, 2019, 12, 290.	6.2	14
33	An Automated Protoplast Transformation System. Methods in Molecular Biology, 2019, 1917, 355-363.	0.9	10
34	Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant and -sensitive hairy fleabane in response to glyphosate treatment. Bragantia, 2019, 78, 379-396.	1.3	14
35	Epigenetic Footprints of CRISPR/Cas9-Mediated Genome Editing in Plants. Frontiers in Plant Science, 2019, 10, 1720.	3.6	20
36	Effects of field-grown transgenic switchgrass carbon inputs on soil organic carbon cycling. PeerJ, 2019, 7, e7887.	2.0	4

#	Article	IF	CITATIONS
37	Advanced editing of the nuclear and plastid genomes in plants. Plant Science, 2018, 273, 42-49.	3.6	26
38	A profilin gene promoter from switchgrass (Panicum virgatum L.) directs strong and specific transgene expression to vascular bundles in rice. Plant Cell Reports, 2018, 37, 587-597.	5.6	10
39	Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nature Biotechnology, 2018, 36, 249-257.	17.5	136
40	Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass. Biotechnology for Biofuels, 2018, 11, 122.	6.2	17
41	Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility. Plant Biotechnology Journal, 2018, 16, 39-49.	8.3	26
42	Climbing plants: attachment adaptations and bioinspired innovations. Plant Cell Reports, 2018, 37, 565-574.	5.6	28
43	Phytopathogen-induced changes to plant methylomes. Plant Cell Reports, 2018, 37, 17-23.	5.6	30
44	Plant metabolic engineering in the synthetic biology era: plant chassis selection. Plant Cell Reports, 2018, 37, 1357-1358.	5.6	9
45	The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression. Plant Cell Reports, 2018, 37, 1419-1429.	5.6	11
46	Functional Analysis of Cellulose Synthase CesA4 and CesA6 Genes in Switchgrass (Panicum virgatum) by Overexpression and RNAi-Mediated Gene Silencing. Frontiers in Plant Science, 2018, 9, 1114.	3.6	34
47	Houseplants as home health monitors. Science, 2018, 361, 229-230.	12.6	8
48	One species to another: sympatric Bt transgene gene flow from Brassica napus alters the reproductive strategy of wild relative Brassica juncea under herbivore treatment. Annals of Botany, 2018, 122, 617-625.	2.9	7
49	Metabolomic analysis of the mechanism of action of yerba mate aqueous extract on Salmonella enterica serovar Typhimurium. Metabolomics, 2017, 13, 1.	3.0	6
50	Elevating the conversation about GE crops. Nature Biotechnology, 2017, 35, 302-304.	17.5	6
51	Becoming weeds. Nature Genetics, 2017, 49, 654-655.	21.4	16
52	Atmospheric pollen dispersion from herbicide-resistant horseweed (Conyza canadensis L.). Aerobiologia, 2017, 33, 393-406.	1.7	10
53	Improved tissue culture conditions for the emerging C4 model Panicum hallii. BMC Biotechnology, 2017, 17, 39.	3.3	8
54	Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. BMC Biotechnology, 2017, 17, 40.	3.3	9

#	Article	IF	CITATIONS
55	Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnology for Biofuels, 2017, 10, 12.	6.2	30
56	An (<i>E,E</i>)â€i+â€farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insectâ€induced volatiles. Plant Biotechnology Journal, 2017, 15, 510-519.	8.3	61
57	Transgenic switchgrass (<i>Panicum virgatum</i> L.) targeted for reduced recalcitrance to bioconversion: a 2â€year comparative analysis of fieldâ€grown lines modified for target gene or genetic element expression. Plant Biotechnology Journal, 2017, 15, 688-697.	8.3	29
58	Fieldâ€grown transgenic switchgrass (<i>Panicum virgatum</i> L.) with altered lignin does not affect soil chemistry, microbiology, and carbon storage potential. GCB Bioenergy, 2017, 9, 1100-1109.	5.6	20
59	The TcEG1 beetle (Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release. Biotechnology for Biofuels, 2017, 10, 230.	6.2	6
60	The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics. Frontiers in Microbiology, 2017, 8, 422.	3.5	90
61	Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement. Biotechnology for Biofuels, 2017, 10, 255.	6.2	11
62	Development and use of a switchgrass (Panicum virgatum L.) transformation pipeline by the BioEnergy Science Center to evaluate plants for reduced cell wall recalcitrance. Biotechnology for Biofuels, 2017, 10, 309.	6.2	26
63	Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum) Tj ETQq1 1	0.784314	rgBT_/Overloc
64	Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels. Frontiers in Plant Science, 2016, 7, 675.	3.6	17
65	Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnology, 2016, 16, 47.	3.3	91
66	Time Course Field Analysis of COMT-Downregulated Switchgrass: Lignification, Recalcitrance, and Rust Susceptibility. Bioenergy Research, 2016, 9, 1087-1100.	3.9	15
67	Progress of targeted genome modification approaches in higher plants. Plant Cell Reports, 2016, 35, 1401-1416.	5.6	43
68	Engineered selective plant male sterility through pollenâ€specific expression of the Eco RI restriction endonuclease. Plant Biotechnology Journal, 2016, 14, 1281-1290.	8.3	14
69	Methods for suspension culture, protoplast extraction, and transformation of highâ€biomass yielding perennial grass <i>Arundo donax</i> . Biotechnology Journal, 2016, 11, 1657-1666.	3.5	4
70	The Science of Gene Flow in Agriculture and Its Role in Coexistence. , 2016, , 13-37.		1
71	A Robotic Platform for High-throughput Protoplast Isolation and Transformation. Journal of Visualized Experiments, 2016, , .	0.3	18
72	Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits. Euphytica, 2016, 209, 341-355.	1.2	3

#	Article	IF	CITATIONS
73	Advancing Crop Transformation in the Era of Genome Editing. Plant Cell, 2016, 28, tpc.00196.2016.	6.6	429
74	Next-generation precision genome engineering and plant biotechnology. Plant Cell Reports, 2016, 35, 1397-1399.	5.6	19
75	Transgenic soybean overexpressing <i>Gm<scp>SAMT</scp>1</i> exhibits resistance to multipleâ€ <scp>HG</scp> types of soybean cyst nematode <i>Heterodera glycines</i> . Plant Biotechnology Journal, 2016, 14, 2100-2109.	8.3	23
76	Plant synthetic promoters and transcription factors. Current Opinion in Biotechnology, 2016, 37, 36-44.	6.6	115
77	Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum) Tj ETQq1 1	0.784314	rgBT /Overlo
78	Field Studies on Dynamic Pollen Production, Deposition, and Dispersion of Glyphosate-Resistant Horseweed (Conyza canadensis). Weed Science, 2016, 64, 101-111.	1.5	11
79	A proteomic analysis of seeds from Bt-transgenic Brassica napus and hybrids with wild B. juncea. Scientific Reports, 2015, 5, 15480.	3.3	17
80	Effects of Produced Water on Soil Characteristics, Plant Biomass, and Secondary Metabolites. Journal of Environmental Quality, 2015, 44, 1938-1947.	2.0	25
81	Identification and Molecular Characterization of the Switchgrass AP2/ERF Transcription Factor Superfamily, and Overexpression of PvERF001 for Improvement of Biomass Characteristics for Biofuel. Frontiers in Bioengineering and Biotechnology, 2015, 3, 101.	4.1	49
82	Manipulating micro <scp>RNA</scp> s for improved biomass and biofuels from plant feedstocks. Plant Biotechnology Journal, 2015, 13, 337-354.	8.3	37
83	The effects of the presence of Bt-transgenic oilseed rape in wild mustard populations on the rhizosphere nematode and microbial communities. Science of the Total Environment, 2015, 530-531, 263-270.	8.0	22
84	Windâ€mediated horseweed (C onyza canadensis) gene flow: pollen emission, dispersion, and deposition. Ecology and Evolution, 2015, 5, 2646-2658.	1.9	16
85	Photosynthetic parameters of switchgrass (Panicum virgatum) under low radiation: Influence of stable overexpression of MiscanthusÅ—giganteus PPDK on responses to light and CO2 under warm and cool growing conditions. New Negatives in Plant Science, 2015, 1-2, 23-32.	0.9	4
86	Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance. Bioenergy Research, 2015, 8, 910-921.	3.9	57
87	The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea. Transgenic Research, 2015, 24, 537-547.	2.4	18
88	The Methylome of Soybean Roots during the Compatible Interaction with the Soybean Cyst Nematode. Plant Physiology, 2015, 168, 1364-1377.	4.8	70
89	The evolutionary history of ferns inferred from 25 low opy nuclear genes. American Journal of Botany, 2015, 102, 1089-1107.	1.7	157
90	Soybean kinome: functional classification and gene expression patterns. Journal of Experimental Botany, 2015, 66, 1919-1934.	4.8	43

#	Article	IF	CITATIONS
91	Transgenic switchgrass (<i>Panicum virgatum</i> L.) biomass is increased by overexpression of switchgrass sucrose synthase (<i>PvSUS1</i>). Biotechnology Journal, 2015, 10, 552-563.	3.5	45
92	Plant synthetic biology. Trends in Plant Science, 2015, 20, 309-317.	8.8	144
93	The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth. Transgenic Research, 2015, 24, 1043-1053.	2.4	4
94	Identification and overexpression of <i>gibberellin 2â€oxidase</i> (<i><scp>GA</scp>2ox</i>) in switchgrass (<i><scp>P</scp>anicum virgatum</i> L.) for improved plant architecture and reduced biomass recalcitrance. Plant Biotechnology Journal, 2015, 13, 636-647.	8.3	117
95	Computational Ranking of Yerba Mate Small Molecules Based on Their Predicted Contribution to Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus. PLoS ONE, 2015, 10, e0123925.	2.5	10
96	Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii. PLoS ONE, 2015, 10, e0139195.	2.5	13
97	Narrow terahertz attenuation signatures <i>in Bacillus thuringiensis</i> . Journal of Biophotonics, 2014, 7, 818-824.	2.3	18
98	Expanding the Scope of Responsible Conduct of Research Instruction. Accountability in Research, 2014, 21, 321-327.	2.4	7
99	Integrated Metagenomics and Metatranscriptomics Analyses of Root-Associated Soil from Transgenic Switchgrass. Genome Announcements, 2014, 2, .	0.8	12
100	Antimicrobial Activity of Hibiscus sabdariffa Aqueous Extracts against Escherichia coli O157:H7 and Staphylococcus aureus in a Microbiological Medium and Milk of Various Fat Concentrations. Journal of Food Protection, 2014, 77, 262-268.	1.7	36
101	The performance of pathogenic bacterial phytosensing transgenic tobacco in the field. Plant Biotechnology Journal, 2014, 12, 755-764.	8.3	13
102	Highâ€ŧhroughput deep sequencing shows that micro <scp>RNA</scp> s play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnology Journal, 2014, 12, 354-366.	8.3	131
103	Twoâ€year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnology Journal, 2014, 12, 914-924.	8.3	104
104	Morphology and ploidy level determination of Pteris vittata callus during induction and regeneration. BMC Biotechnology, 2014, 14, 96.	3.3	6
105	ATP-Dependent Binding Cassette Transporter G Family Member 16 Increases Plant Tolerance to Abscisic Acid and Assists in Basal Resistance against <i>Pseudomonas syringae</i> DC3000 Â Â. Plant Physiology, 2014, 166, 879-888.	4.8	46
106	Genetic diversity analysis of switchgrass (Panicum virgatum L.) populations using microsatellites and chloroplast sequences. Agroforestry Systems, 2014, 88, 823-834.	2.0	3
107	Physiological and transcriptional responses of Baccharis halimifolia to the explosive "composition B― (RDX/TNT) in amended soil. Environmental Science and Pollution Research, 2014, 21, 8261-8270.	5.3	21
108	Aqueous extracts of Hibiscus sabdariffa calyces as an antimicrobial rinse on hot dogs against Listeria monocytogenes and methicillin-resistant Staphylococcus aureus. Food Control, 2014, 40, 274-277.	5.5	45

#	Article	IF	CITATIONS
109	Images and imagination: the role of figures in plant cell and molecular biology publications. Plant Cell Reports, 2014, 33, 829-830.	5.6	2
110	Synthetic <scp>TAL</scp> effectors for targeted enhancement of transgene expression in plants. Plant Biotechnology Journal, 2014, 12, 436-446.	8.3	18
111	De Novo Genome Assembly of the Economically Important Weed Horseweed Using Integrated Data from Multiple Sequencing Platforms Â. Plant Physiology, 2014, 166, 1241-1254.	4.8	101
112	â€~Fukusensor:' a genetically engineered plant for reporting <scp>DNA</scp> damage in response to gamma radiation. Plant Biotechnology Journal, 2014, 12, 1329-1332.	8.3	7
113	Stable Bacillus thuringiensis transgene introgression from Brassica napus to wild mustard B. juncea. Plant Science, 2014, 227, 45-50.	3.6	14
114	Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal, 2014, 12, 1006-1014.	8.3	110
115	Computational discovery of soybean promoter <i>cis</i> â€regulatory elements for the construction of soybean cyst nematodeâ€inducible synthetic promoters. Plant Biotechnology Journal, 2014, 12, 1015-1026.	8.3	42
116	Advances in biotechnology and genomics of switchgrass. Biotechnology for Biofuels, 2013, 6, 77.	6.2	39
117	Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels, 2013, 6, 71.	6.2	118
118	Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnology, 2013, 13, 36.	3.3	107
119	Standardization of Switchgrass Sample Collection for Cell Wall and Biomass Trait Analysis. Bioenergy Research, 2013, 6, 755-762.	3.9	87
120	Advanced genetic tools for plant biotechnology. Nature Reviews Genetics, 2013, 14, 781-793.	16.3	188
121	Introgression of Crop Alleles into Wild or Weedy Populations. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 325-345.	8.3	169
122	An orange fluorescent protein tagging system for real-time pollen tracking. BMC Research Notes, 2013, 6, 383.	1.4	2
123	Assessing the bioconfinement potential of a Nicotianahybrid platform for use in plant molecular farming applications. BMC Biotechnology, 2013, 13, 63.	3.3	4
124	Monitoring the Environmental Impact of TiO\$_{f 2}\$ Nanoparticles Using a Plant-Based Sensor Network. IEEE Nanotechnology Magazine, 2013, 12, 182-189.	2.0	7
125	Genetic diversity and structure of natural and agronomic switchgrass (Panicum virgatum L.) populations. Genetic Resources and Crop Evolution, 2013, 60, 1057-1068.	1.6	11
126	Mega-Nano Detection of Foodborne Pathogens and Transgenes Using Molecular Beacon and Semiconductor Quantum Dot Technologies. IEEE Transactions on Nanobioscience, 2013, 12, 233-238.	3.3	10

#	Article	IF	CITATIONS
127	Bacterial pathogen phytosensing in transgenic tobacco and <i><scp>A</scp>rabidopsis</i> plants. Plant Biotechnology Journal, 2013, 11, 43-52.	8.3	30
128	Ecological Functions of Terpenoids in Changing Climates. , 2013, , 2913-2940.		14
129	Characterization of physicochemical properties of ivy nanoparticles for cosmetic application. Journal of Nanobiotechnology, 2013, 11, 3.	9.1	24
130	Gene use restriction technologies for transgenic plant bioconfinement. Plant Biotechnology Journal, 2013, 11, 649-658.	8.3	19
131	Bio-Synthesis of Gold Nanoparticles Using English ivy (<i>Hedera helix</i>). Journal of Nanoscience and Nanotechnology, 2013, 13, 1649-1659.	0.9	6
132	A Genomics Approach to Deciphering Lignin Biosynthesis in Switchgrass. Plant Cell, 2013, 25, 4342-4361.	6.6	109
133	Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress. Biofuels, 2013, 4, 635-650.	2.4	59
134	Evolution and spread of glyphosate resistance in <i><scp>C</scp>onyza canadensis</i> in <scp>C</scp> alifornia. Evolutionary Applications, 2013, 6, 761-777.	3.1	53
135	Stable Transformation of Ferns Using Spores as Targets: Pteris vittata and Ceratopteris thalictroides. Plant Physiology, 2013, 163, 648-658.	4.8	44
136	Isolation and chemical analysis of nanoparticles from English ivy (<i>Hedera helix</i> L.). Journal of the Royal Society Interface, 2013, 10, 20130392.	3.4	22
137	Online tool for GR horseweed (Conyza canadensis) gene flow. , 2013, , .		0
138	Aqueous Extracts of Yerba Mate (Ilex paraguariensis) as a Natural Antimicrobial against Escherichia coll O157:H7 in a Microbiological Medium and pH 6.0 Apple Juice. Journal of Food Protection, 2012, 75, 753-757.	1.7	28
139	Misconduct versus Honest Error and Scientific Disagreement. Accountability in Research, 2012, 19, 56-63.	2.4	39
140	Gene flow matters in switchgrass (<i>Panicum virgatum</i> L.), a potential widespread biofuel feedstock. Ecological Applications, 2012, 22, 3-7.	3.8	28
141	Very bright orange fluorescent plants: endoplasmic reticulum targeting of orange fluorescent proteins as visual reporters in transgenic plants. BMC Biotechnology, 2012, 12, 17.	3.3	34
142	Nanoparticle biofabrication using English ivy (Hedera helix). Journal of Nanobiotechnology, 2012, 10, 41.	9.1	25
143	Fluorescent nanoparticles: Sensing pathogens and toxins in foods and crops. Trends in Food Science and Technology, 2012, 28, 143-152.	15.1	41
144	Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLoS ONE, 2012, 7, e50226.	2.5	172

#	Article	IF	CITATIONS
145	Functional characterization of the switchgrass (<i>Panicum virgatum</i>) R2R3â€MYB transcription factor <i>PvMYB4</i> for improvement of lignocellulosic feedstocks. New Phytologist, 2012, 193, 121-136.	7.3	264
146	Gateway ompatible vectors for highâ€ŧhroughput gene functional analysis in switchgrass (<i>Panicum) Tj E</i>	ΓQq <mark>8</mark> .3 0 rε	gBT/Overlock
147	Overexpression of miR156 in switchgrass (<i>Panicum virgatum</i> L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 2012, 10, 443-452.	8.3	293
148	MicroRNA Expression Analysis in the Cellulosic Biofuel Crop Switchgrass (Panicum virgatum) under Abiotic Stress. PLoS ONE, 2012, 7, e32017.	2.5	87
149	The Effects of Seed Size on Hybrids Formed between Oilseed Rape (Brassica napus) and Wild Brown Mustard (B. juncea). PLoS ONE, 2012, 7, e39705.	2.5	7
150	Detecting the environmental impact of nanoparticles using plant-based biosensors. , 2011, , .		0
151	Intellectual Property Aspects of Plant Transformation. , 2011, , 243-270.		1
152	Optoelectronic Signatures of DNA-Based Hybrid Nanostructures. IEEE Nanotechnology Magazine, 2011, 10, 35-43.	2.0	17
153	Switchgrass (Panicum virgatum L.) cell suspension cultures: Establishment, characterization, and application. Plant Science, 2011, 181, 712-715.	3.6	24
154	Bioenergy plants in the United States and China. Plant Science, 2011, 181, 621-622.	3.6	1
155	Biomass feedstock: diversity as a solution. Biofuels, 2011, 2, 491-493.	2.4	9
156	Aluminium accumulation in Pteris cretica and trace element uptake in vegetation growing on an abandoned aluminium smelter site in Knoxville, TN, USA. International Journal of Environment and Pollution, 2011, 45, 310.	0.2	1
157	An efficient and rapid transgenic pollen screening and detection method using flow cytometry. Biotechnology Journal, 2011, 6, 118-123.	3.5	19
158	Characterization of English ivy (Hedera helix) adhesion force and imaging using atomic force microscopy. Journal of Nanoparticle Research, 2011, 13, 1029-1037.	1.9	26
159	Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants. Plant Cell Reports, 2011, 30, 325-334.	5.6	34
160	Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theoretical and Applied Genetics, 2011, 123, 1193-206.	3.6	49
161	Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnology, 2011, 11, 108.	3.3	50
162	Highâ€ŧhroughput functional marker assay for detection of <i>Xa/xa</i> and <i>fgr</i> genes in rice	2.4	11

(<i>Oryza sativa</i> L.). Electrophoresis, 2011, 32, 2216-2222.

#	Article	IF	CITATIONS
163	Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends in Biotechnology, 2011, 29, 284-293.	9.3	92
164	US–China collaborative biofuel research: towards a global solution for petroleum replacement. Biofuels, 2011, 2, 487-489.	2.4	2
165	Hyperspectral studies of transgenic oilseed rape. International Journal of Remote Sensing, 2011, 32, 1095-1103.	2.9	3
166	Sustainable Use of Biotechnology for Bioenergy Feedstocks. Environmental Management, 2010, 46, 531-538.	2.7	19
167	China–U.S. workshop on biotechnology of bioenergy plants. Ecotoxicology, 2010, 19, 1-3.	2.4	6
168	Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Trends in Biotechnology, 2010, 28, 3-8.	9.3	55
169	Abiotic stress and transgenics: Implications for reproductive success and crop-to-wild gene flow in Brassicas. Basic and Applied Ecology, 2010, 11, 513-521.	2.7	6
170	Characterization of the horseweed (<i>Conyza canadensis</i>) transcriptome using GSâ€FLX 454 pyrosequencing and its application for expression analysis of candidate nonâ€ŧarget herbicide resistance genes. Pest Management Science, 2010, 66, 1053-1062.	3.4	112
171	Characterization of <i>de novo</i> transcriptome for waterhemp (<i>Amaranthus tuberculatus</i>) using GSâ€FLX 454 pyrosequencing and its application for studies of herbicide targetâ€site genes. Pest Management Science, 2010, 66, 1042-1052.	3.4	89
172	Transgenic perennial biofuel feedstocks and strategies for bioconfinement. Biofuels, 2010, 1, 163-176.	2.4	47
173	Functional Genomics Analysis of Horseweed (<i>Conyza canadensis</i>) with Special Reference to the Evolution of Non–Target-Site Clyphosate Resistance. Weed Science, 2010, 58, 109-117.	1.5	60
174	FLP/FRT Recombination from Yeast: Application of a Two Gene Cassette Scheme as an Inducible System in Plants. Sensors, 2010, 10, 8526-8535.	3.8	10
175	Patent reform in the US: what's at stake for pharmaceutical innovation?. Expert Opinion on Therapeutic Patents, 2010, 20, 603-608.	5.0	3
176	Fluorescent Proteins in Transgenic Plants. Reviews in Fluorescence, 2010, , 387-403.	0.5	7
177	Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops. Biotechnology in Agriculture and Forestry, 2010, , 285-297.	0.2	8
178	Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement. Biotechnology in Agriculture and Forestry, 2010, , 299-315.	0.2	6
179	Selection of Bioassay Method Influences Detection of Annual Bluegrass Resistance to Mitoticâ€Inhibiting Herbicides. Crop Science, 2009, 49, 1088-1095.	1.8	27
180	Evolution of Weediness and Invasiveness: Charting the Course for Weed Genomics. Weed Science, 2009, 57, 451-462.	1.5	82

#	Article	IF	CITATIONS
181	Novel software package for cross-platform transcriptome analysis (CPTRA). BMC Bioinformatics, 2009, 10, S16.	2.6	17
182	Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics, 2009, 10, S3.	2.6	190
183	Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Functional and Integrative Genomics, 2009, 9, 537-47.	3.5	25
184	An Improved Tissue Culture System for Embryogenic Callus Production and Plant Regeneration in Switchgrass (Panicum virgatum L.). Bioenergy Research, 2009, 2, 267-274.	3.9	80
185	Rapid Assessment of Lignin Content and Structure in Switchgrass (Panicum virgatum L.) Grown Under Different Environmental Conditions. Bioenergy Research, 2009, 2, 246-256.	3.9	82
186	Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific. Theoretical and Applied Genetics, 2009, 118, 359-70.	3.6	35
187	Fitness and maternal effects in hybrids formed between transgenic oilseed rape (<i>Brassica napus</i>) Tj ETQq1 2009, 65, 753-760.	1 0.7843 3.4	14 rgBT /Ove 35
188	Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations. BMC Biotechnology, 2009, 9, 93.	3.3	40
189	Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (<i>Brassica napus</i>). New Phytologist, 2009, 181, 174-186.	7.3	94
190	Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent. Environmental Pollution, 2009, 157, 181-185.	7.5	11
191	Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends in Ecology and Evolution, 2009, 24, 323-331.	8.7	192
192	Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta, 2008, 227, 427-37.	3.2	45
193	Statistical methods for efficiency adjusted realâ€ŧime PCR quantification. Biotechnology Journal, 2008, 3, 112-123.	3.5	204
194	Protoplast isolation and transient gene expression in switchgrass, <i>Panicum virgatum</i> L Biotechnology Journal, 2008, 3, 354-359.	3.5	53
195	Pharming in crop commodities. Nature Biotechnology, 2008, 26, 1222-1223.	17.5	12
196	Movement of transgenic plantâ€expressed Bt Cry1Ac proteins through high trophic levels. Journal of Applied Entomology, 2008, 132, 1-11.	1.8	23
197	Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are <i>Bacillus thuringiensis</i> (Bt) plants more susceptible to nontarget herbivores in future climate?. Global Change Biology, 2008, 14, 1437-1454.	9.5	45
198	Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biology, 2008, 8, 87.	3.6	197

#	Article	IF	CITATIONS
199	An <i>Arabidopsis thaliana</i> ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to <i>Escherichia coli</i> . Microbial Biotechnology, 2008, 1, 191-195.	4.2	9
200	Plant systems biology comes of age. Trends in Plant Science, 2008, 13, 165-171.	8.8	165
201	Plants to power: bioenergy to fuel the future. Trends in Plant Science, 2008, 13, 421-429.	8.8	392
202	Pathogen Phytosensing: Plants to Report Plant Pathogens. Sensors, 2008, 8, 2628-2641.	3.8	45
203	Non-target-site herbicide resistance: a family business. Trends in Plant Science, 2007, 12, 6-13.	8.8	451
204	Rapeseed Biotechnology. Advances in Botanical Research, 2007, , 435-449.	1.1	1
205	Are university researchers at risk for patent infringement?. Nature Biotechnology, 2007, 25, 1225-1228.	17.5	12
206	Biofuels and biocontainment. Nature Biotechnology, 2007, 25, 283-284.	17.5	43
207	'GM-gene-deletor': fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnology Journal, 2007, 5, 263-374.	8.3	168
208	Expression of Bt cry1Ac in transgenic oilseed rape in China and transgenic performance of intraspecific hybrids against Helicoverpa armigera larvae. Annals of Applied Biology, 2007, 150, 141-147.	2.5	10
209	Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics, 2007, 8, S6.	2.6	61
210	Methods to produce marker-free transgenic plants. Biotechnology Journal, 2007, 2, 83-90.	3.5	122
211	Transformation and segregation of GFP fluorescence and glyphosate resistance in horseweed (Conyza) Tj ETQq1 1	0.784314 5.6	4 rgBT /Ow
212	Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes. Plant Cell Reports, 2007, 26, 1001-1010.	5.6	19
213	Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora) Tj ETQq1	1,0.78431 3.5	l4.rgBT /O
214	Expression of green fluorescent protein in pollen of oilseed rape (Brassica napus L.) and its utility for assessing pollen movement in the field. Biotechnology Journal, 2006, 1, 1147-1152.	3.5	11
215	Correlated Expression of gfp and Bt cry1Ac Gene Facilitates Quantification of Transgenic Hybridization between Brassicas. Plant Biology, 2006, 8, 861-863.	3.8	0
216	Correlated Expression of gfp and Bt cry1Ac Gene Facilitates Quantification of Transgenic Hybridization between Brassicas. Plant Biology, 2006, 8, 723-730.	3.8	9

#	Article	IF	CITATIONS
217	Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle. Transgenic Research, 2006, 15, 501-514.	2.4	30
218	Go with the glow: fluorescent proteins to light transgenic organisms. Trends in Biotechnology, 2006, 24, 155-162.	9.3	96
219	Statistical analysis of real-time PCR data. BMC Bioinformatics, 2006, 7, 85.	2.6	1,651
220	Evaluation of Fern and Moss Proteinâ€Based Defenses Against Phytophagous Insects. International Journal of Plant Sciences, 2006, 167, 111-117.	1.3	36
221	Transgene Dispersal Through Pollen. , 2005, 286, 365-374.		1
222	Green Fluorescent Protein Quantification in Whole Plants. , 2005, 286, 215-226.		4
223	Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Molecular Ecology, 2005, 14, 3177-3189.	3.9	72
224	Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nature Biotechnology, 2005, 23, 1177-1180.	17.5	123
225	Age-related increase in levels of insecticidal protein in the progenies of transgenic oilseed rape and its efficacy against a susceptible strain of diamondback moth. Annals of Applied Biology, 2005, 147, 227-234.	2.5	17
226	Laser-Induced Fluorescence Imaging and Spectroscopy of GFP Transgenic Plants. Journal of Fluorescence, 2005, 15, 697-705.	2.5	18
227	Laboratory studies of the effects of reduced prey choice caused by Bt plants on a predatory insect. Bulletin of Entomological Research, 2005, 95, 243.	1.0	16
228	Genomic analysis of the response of Arabidopsis thaliana to trinitrotoluene as revealed by cDNA microarrays. Plant Science, 2005, 168, 1409-1424.	3.6	25
229	Monitoring the presence and expression of transgenes in living plants. Trends in Plant Science, 2005, 10, 390-396.	8.8	61
230	Plant functional genomics: beyond the parts list. Trends in Plant Science, 2005, 10, 561-562.	8.8	6
231	Crops Come from Wild Plants — How Domestication, Transgenes, and Linkage Together Shape Ferality. , 2005, , 9-30.		11
232	Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions. Environmental Biosafety Research, 2004, 3, 73-81.	1.1	56
233	Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera:) Tj ETQq1 (Lepidoptera: Plutellidae). Journal of Insect Physiology, 2004, 50, 435-443.	1 0.78431 2.0	.4 rgBT /Ov 90
234	Brassica biotechnology: Progress in cellular and molecular biology. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 542-551.	2.1	97

#	Article	IF	CITATIONS
235	Effects of pollen-synthesized green fluorescent protein on pollen grain fitness. Sexual Plant Reproduction, 2004, 17, 49-53.	2.2	18
236	Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. Plant Physiology and Biochemistry, 2004, 42, 383-387.	5.8	124
237	Stable Bacillus thuringiensis (Bt) toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer. Molecular Ecology, 2004, 13, 237-241.	3.9	35
238	Differential gene expression of Chlamydomonas reinhardtii in response to 2,4,6-trinitrotoluene (TNT) using microarray analysis. Plant Science, 2004, 167, 1109-1122.	3.6	21
239	Weed genomics: new tools to understand weed biology. Trends in Plant Science, 2004, 9, 391-398.	8.8	92
240	Inheritance of GFP-Bt transgenes fromBrassicaÂnapusin backcrosses with three wildB.Ârapaaccessions. Environmental Biosafety Research, 2004, 3, 45-54.	1.1	12
241	Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Transgenic Research, 2003, 12, 351-361.	2.4	72
242	Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theoretical and Applied Genetics, 2003, 107, 528-539.	3.6	241
243	Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop × weed hybrid generations. Theoretical and Applied Genetics, 2003, 107, 1533-1540.	3.6	51
244	Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus) Tj ETQq0 0	0_rgBT /O	verlock 10 Tf 150
245	Quantitative GFP fluorescence as an indicator of recombinant protein synthesis in transgenic plants. Plant Cell Reports, 2003, 22, 117-121.	5.6	69
246	Spatial and temporal patterns of green fluorescent protein (GFP) fluorescence during leaf canopy development in transgenic oilseed rape, Brassica napus L. Plant Cell Reports, 2003, 22, 338-343.	5.6	36
247	Press before paper—when media and science collide. Nature Biotechnology, 2003, 21, 353-354.	17.5	7
248	Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics, 2003, 4, 806-817.	16.3	355
249	Shikimate Accumulates in Both Glyphosate-Sensitive and Glyphosate-Resistant Horseweed (Conyza) Tj ETQq1 1 ().784314 5.2	rgBT /Overiod
250	Pathogen inducible reporting in transgenic tobacco using a GFP construct. Plant Science, 2003, 165, 213-219.	3.6	18
251	Safety Assessment of Recombinant Green Fluorescent Protein Orally Administered to Weaned Rats. Journal of Nutrition, 2003, 133, 1909-1912.	2.9	51
252	Instrumentation and Methodology for Quantifying GFP Fluorescence in Intact Plant Organs. BioTechniques, 2003, 34, 638-643.	1.8	48

#	Article	IF	CITATIONS
253	Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics, 2003, 4, 844-844.	16.3	1
254	TransgenicBt-producingBrassica napus:Plutella xylostellaselection pressure and fitness of weedy relatives. Environmental Biosafety Research, 2003, 2, 263-276.	1.1	39
255	Green Fluorescent Protein in Transgenic Plants: Brassica Transformation. , 2002, 183, 245-252.		1
256	<title>Genetically modified plants for law enforcement applications</title> ., 2002, , .		0
257	Bt-transgenic oilseed rape hybridization with its weedy relative,Brassica rapa. Environmental Biosafety Research, 2002, 1, 19-28.	1.1	64
258	Genetically modified plants for tactical systems applications. , 2002, 4743, 225.		0
259	capability from immature cotyledons. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 543-548.	2.1	26
260	The utility of green fluorescent protein in transgenic plants. Plant Cell Reports, 2001, 20, 376-382.	5.6	181
261	Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theoretical and Applied Genetics, 2001, 103, 659-667.	3.6	128
262	GM crop data—agronomy and ecology in tandem. Nature Biotechnology, 2001, 19, 3-3.	17.5	22
263	GFP IN PLANT BIOTECHNOLOGY AND AGRICULTURE. , 2001, , .		0
264	Transgenic Plants and Biosafety: Science, Misconceptions and Public Perceptions. BioTechniques, 2000, 29, 832-843.	1.8	76
265	Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nature Biotechnology, 1999, 17, 1125-1129.	17.5	106
266	Transgene escape and transplastomics. Nature Biotechnology, 1999, 17, 330-331.	17.5	16
267	Interactions in Entomology: Utilization and Management of New Genetic Techniques for Insect Control in Southern Field Crops. Journal of Entomological Science, 1999, 34, 2-7.	0.3	4
268	Letter 1: Chloroplast-transgenic plants are not a gene flow panacea. Nature Biotechnology, 1998, 16, 401-401.	17.5	16
269	Greenhouse and field evaluations of transgenic canola against diamondback moth, Plutella xylostella, and corn earworm, Helicoverpa zea. Entomologia Experimentalis Et Applicata, 1998, 88, 17-24.	1.4	17
270	Survival, Development, and Oviposition of Resistant Diamondback Moth (Lepidoptera: Plutellidae) on Transgenic Canola Producing a Bacillus thuringiensis Toxin. Journal of Economic Entomology, 1998, 91, 1239-1244.	1.8	83

#	Article	IF	CITATIONS
271	Movement and Survival of Diamondback Moth (Lepidoptera: Plutellidae) Larvae in Mixtures of Nontransgenic and Transgenic Canola Containing a cryla (c) Gene of Bacillus thuringiensis. Environmental Entomology, 1998, 27, 649-656.	1.4	26
272	Applications of Green Fluorescent Protein in Plants. BioTechniques, 1997, 23, 912-918.	1.8	112
273	Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Molecular Ecology, 1997, 6, 773-779.	3.9	117
274	Genetic Transformation, Recovery, and Characterization of Fertile Soybean Transgenic for a Synthetic Bacillus thuringiensis cryIAc Gene. Plant Physiology, 1996, 112, 121-129.	4.8	237
275	Assessing population genetic structure and variability with RAPD data: Application to Vaccinium macrocarpon (American Cranberry). Journal of Evolutionary Biology, 1996, 9, 153-171.	1.7	217
276	Monitoring transgenic plants using in vivo markers. Nature Biotechnology, 1996, 14, 682-682.	17.5	40
277	Population genetic variation in rare and endangered Iliamna (Malvaceae) in Virginia. Biological Journal of the Linnean Society, 1996, 58, 357-369.	1.6	6
278	Insect Control and Dosage Effects in Transgenic Canola Containing a Synthetic Bacillus thuringiensis crylAc Gene. Plant Physiology, 1996, 112, 115-120.	4.8	130
279	Phenotypic Plasticity and Genetic Variation of Vaccinium macrocarpon, the American Cranberry. I. Reaction Norms of Clones from Central and Marginal Populations in a Common Garden. International Journal of Plant Sciences, 1995, 156, 687-697.	1.3	40
280	RAPD profiling in biological conservation: An application to estimating clonal variation in rare and endangered lliamna in Virginia. Biological Conservation, 1995, 74, 135-142.	4.1	53
281	Phenotypic Plasticity and Genetic Variation of Vaccinium macrocarpon, the American Cranberry. II. Reaction Norms and Spatial Clonal Patterns in Two Marginal Populations. International Journal of Plant Sciences, 1995, 156, 698-708.	1.3	12
282	Responses of <i>Drosera capensis</i> and <i>D. binata</i> var. <i>multifida</i> (Droseraceae) to manipulations of insect availability and soil nutrient levels. New Zealand Journal of Botany, 1993, 31, 385-390.	1.1	8
283	Association of Edaphic Factors and Vegetation in Several Isolated Appalachian Peat Bogs. Bulletin of the Torrey Botanical Club, 1993, 120, 128.	0.6	19
284	Drosera rotundifolia growth and nutrition in a natural population with special reference to the significance of insectivory. Canadian Journal of Botany, 1992, 70, 1409-1416.	1.1	26
285	Genes and Traits of Interest for Transgenic Plants. , 0, , 193-216.		4
286	Arabidopsis Is Not a Weed, and Mostly Not a Good Model for Weed Genomics; There Is No Good Model for Weed Genomics. , 0, , 25-32.		3