C Neal Stewart Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630016/publications.pdf

Version: 2024-02-01

286 papers 15,815 citations

64 h-index 22166 113 g-index

301 all docs

301 docs citations

times ranked

301

16880 citing authors

#	Article	IF	CITATIONS
1	Statistical analysis of real-time PCR data. BMC Bioinformatics, 2006, 7, 85.	2.6	1,651
2	Non-target-site herbicide resistance: a family business. Trends in Plant Science, 2007, 12, 6-13.	8.8	451
3	Advancing Crop Transformation in the Era of Genome Editing. Plant Cell, 2016, 28, tpc.00196.2016.	6.6	429
4	Plants to power: bioenergy to fuel the future. Trends in Plant Science, 2008, 13, 421-429.	8.8	392
5	Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics, 2003, 4, 806-817.	16.3	355
6	Overexpression of miR156 in switchgrass (<i>Panicum virgatum</i> L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 2012, 10, 443-452.	8.3	293
7	Functional characterization of the switchgrass (⟨i⟩Panicum virgatum⟨ i⟩) R2R3â€MYB transcription factor ⟨i⟩PvMYB4⟨ i⟩ for improvement of lignocellulosic feedstocks. New Phytologist, 2012, 193, 121-136.	7.3	264
8	Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theoretical and Applied Genetics, 2003, 107, 528-539.	3.6	241
9	Genetic Transformation, Recovery, and Characterization of Fertile Soybean Transgenic for a Synthetic Bacillus thuringiensis crylAc Gene. Plant Physiology, 1996, 112, 121-129.	4.8	237
10	Assessing population genetic structure and variability with RAPD data: Application to Vaccinium macrocarpon (American Cranberry). Journal of Evolutionary Biology, 1996, 9, 153-171.	1.7	217
11	Statistical methods for efficiency adjusted realâ€time PCR quantification. Biotechnology Journal, 2008, 3, 112-123.	3.5	204
12	Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biology, 2008, 8, 87.	3.6	197
13	Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends in Ecology and Evolution, 2009, 24, 323-331.	8.7	192
14	Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics, 2009, 10, S3.	2.6	190
15	Advanced genetic tools for plant biotechnology. Nature Reviews Genetics, 2013, 14, 781-793.	16.3	188
16	The utility of green fluorescent protein in transgenic plants. Plant Cell Reports, 2001, 20, 376-382.	5.6	181
17	Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLoS ONE, 2012, 7, e50226.	2.5	172
18	Introgression of Crop Alleles into Wild or Weedy Populations. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 325-345.	8.3	169

#	Article	IF	CITATIONS
19	'GM-gene-deletor': fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnology Journal, 2007, 5, 263-374.	8.3	168
20	Plant systems biology comes of age. Trends in Plant Science, 2008, 13, 165-171.	8.8	165
21	The evolutionary history of ferns inferred from 25 lowâ€copy nuclear genes. American Journal of Botany, 2015, 102, 1089-1107.	1.7	157
22	Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus) Tj ETQq0 C	0 rgBT /C)verlock 10 T 150
23	Gatewayâ€compatible vectors for highâ€throughput gene functional analysis in switchgrass (<i>Panicum) Tj ETÇ</i>	Qq1,10.78	84314 rgBT
24	Plant synthetic biology. Trends in Plant Science, 2015, 20, 309-317.	8.8	144
25	Shikimate Accumulates in Both Glyphosate-Sensitive and Glyphosate-Resistant Horseweed (Conyza) Tj ETQq1 1	0.784314 5.2	rgBT/Overlo
26	Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nature Biotechnology, 2018, 36, 249-257.	17.5	136
27	Highâ€throughput deep sequencing shows that micro <scp>RNA</scp> s play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnology Journal, 2014, 12, 354-366.	8.3	131
28	Insect Control and Dosage Effects in Transgenic Canola Containing a Synthetic Bacillus thuringiensis crylAc Gene. Plant Physiology, 1996, 112, 115-120.	4.8	130
29	Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theoretical and Applied Genetics, 2001, 103, 659-667.	3.6	128
30	Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. Plant Physiology and Biochemistry, 2004, 42, 383-387.	5.8	124
31	Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nature Biotechnology, 2005, 23, 1177-1180.	17.5	123
32	Methods to produce marker-free transgenic plants. Biotechnology Journal, 2007, 2, 83-90.	3.5	122
33	Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels, 2013, 6, 71.	6.2	118
34	Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Molecular Ecology, 1997, 6, 773-779.	3.9	117
35	Identification and overexpression of <i>gibberellin 2â€oxidase</i> (<i><scp>GA</scp>2ox</i>) in switchgrass (<i><scp>P</scp>anicum virgatum</i> L.) for improved plant architecture and reduced biomass recalcitrance. Plant Biotechnology Journal, 2015, 13, 636-647.	8.3	117
36	Plant synthetic promoters and transcription factors. Current Opinion in Biotechnology, 2016, 37, 36-44.	6.6	115

#	Article	IF	Citations
37	Applications of Green Fluorescent Protein in Plants. BioTechniques, 1997, 23, 912-918.	1.8	112
38	Characterization of the horseweed (<i>Conyza canadensis</i>) transcriptome using GSâ€FLX 454 pyrosequencing and its application for expression analysis of candidate nonâ€target herbicide resistance genes. Pest Management Science, 2010, 66, 1053-1062.	3.4	112
39	Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal, 2014, 12, 1006-1014.	8.3	110
40	A Genomics Approach to Deciphering Lignin Biosynthesis in Switchgrass. Plant Cell, 2013, 25, 4342-4361.	6.6	109
41	Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnology, 2013, 13, 36.	3.3	107
42	Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nature Biotechnology, 1999, 17, 1125-1129.	17.5	106
43	Twoâ€year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnology Journal, 2014, 12, 914-924.	8.3	104
44	De Novo Genome Assembly of the Economically Important Weed Horseweed Using Integrated Data from Multiple Sequencing Platforms \hat{A} \hat{A} \hat{A} . Plant Physiology, 2014, 166, 1241-1254.	4.8	101
45	Brassica biotechnology: Progress in cellular and molecular biology. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 542-551.	2.1	97
46	Go with the glow: fluorescent proteins to light transgenic organisms. Trends in Biotechnology, 2006, 24, 155-162.	9.3	96
47	Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (<i>Brassica napus</i>). New Phytologist, 2009, 181, 174-186.	7.3	94
48	Weed genomics: new tools to understand weed biology. Trends in Plant Science, 2004, 9, 391-398.	8.8	92
49	Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends in Biotechnology, 2011, 29, 284-293.	9.3	92
50	Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnology, 2016, 16, 47.	3.3	91
51	Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera:) Tj ETQq1 I (Lepidoptera: Plutellidae). Journal of Insect Physiology, 2004, 50, 435-443.	l 0.784314 2.0	4 rgBT /Ove 90
52	The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics. Frontiers in Microbiology, 2017, 8, 422.	3.5	90
53	Characterization of <i>de novo</i> transcriptome for waterhemp (<i>Amaranthus tuberculatus</i>) using GSâ€FLX 454 pyrosequencing and its application for studies of herbicide targetâ€site genes. Pest Management Science, 2010, 66, 1042-1052.	3.4	89
54	Standardization of Switchgrass Sample Collection for Cell Wall and Biomass Trait Analysis. Bioenergy Research, 2013, 6, 755-762.	3.9	87

#	Article	IF	Citations
55	MicroRNA Expression Analysis in the Cellulosic Biofuel Crop Switchgrass (Panicum virgatum) under Abiotic Stress. PLoS ONE, 2012, 7, e32017.	2.5	87
56	Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. International Journal of Molecular Sciences, 2019, 20, 1086.	4.1	86
57	Survival, Development, and Oviposition of Resistant Diamondback Moth (Lepidoptera: Plutellidae) on Transgenic Canola Producing a Bacillus thuringiensis Toxin. Journal of Economic Entomology, 1998, 91, 1239-1244.	1.8	83
58	Evolution of Weediness and Invasiveness: Charting the Course for Weed Genomics. Weed Science, 2009, 57, 451-462.	1.5	82
59	Rapid Assessment of Lignin Content and Structure in Switchgrass (Panicum virgatum L.) Grown Under Different Environmental Conditions. Bioenergy Research, 2009, 2, 246-256.	3.9	82
60	An Improved Tissue Culture System for Embryogenic Callus Production and Plant Regeneration in Switchgrass (Panicum virgatum L.). Bioenergy Research, 2009, 2, 267-274.	3.9	80
61	Transgenic Plants and Biosafety: Science, Misconceptions and Public Perceptions. BioTechniques, 2000, 29, 832-843.	1.8	76
62	Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Transgenic Research, 2003, 12, 351-361.	2.4	72
63	Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Molecular Ecology, 2005, 14, 3177-3189.	3.9	72
64	The Methylome of Soybean Roots during the Compatible Interaction with the Soybean Cyst Nematode. Plant Physiology, 2015, 168, 1364-1377.	4.8	70
65	Quantitative GFP fluorescence as an indicator of recombinant protein synthesis in transgenic plants. Plant Cell Reports, 2003, 22, 117-121.	5.6	69
66	Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Reports, 2020, 39, 245-257.	5.6	66
67	Bt-transgenic oilseed rape hybridization with its weedy relative,Brassica rapa. Environmental Biosafety Research, 2002, 1, 19-28.	1.1	64
68	Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit?. Annual Review of Phytopathology, 2019, 57, 165-188.	7.8	64
69	Monitoring the presence and expression of transgenes in living plants. Trends in Plant Science, 2005, 10, 390-396.	8.8	61
70	Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics, 2007, 8, S6.	2.6	61
71	Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
72	An (<i>E,E</i>)â€Î±â€farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insectâ€induced volatiles. Plant Biotechnology Journal, 2017, 15, 510-519.	8.3	61

#	Article	IF	Citations
73	Functional Genomics Analysis of Horseweed (<i>Conyza canadensis</i>) with Special Reference to the Evolution of Non–Target-Site Glyphosate Resistance. Weed Science, 2010, 58, 109-117.	1.5	60
74	Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress. Biofuels, 2013, 4, 635-650.	2.4	59
75	Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance. Bioenergy Research, 2015, 8, 910-921.	3.9	57
76	Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions. Environmental Biosafety Research, 2004, 3, 73-81.	1.1	56
77	Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Trends in Biotechnology, 2010, 28, 3-8.	9.3	55
78	Functional Markers for Precision Plant Breeding. International Journal of Molecular Sciences, 2020, 21, 4792.	4.1	55
79	RAPD profiling in biological conservation: An application to estimating clonal variation in rare and endangered Iliamna in Virginia. Biological Conservation, 1995, 74, 135-142.	4.1	53
80	Protoplast isolation and transient gene expression in switchgrass, <i>Panicum virgatum</i> L Biotechnology Journal, 2008, 3, 354-359.	3.5	53
81	Evolution and spread of glyphosate resistance in <i><scp>C</scp>onyza canadensis</i> in <scp>C</scp> alifornia. Evolutionary Applications, 2013, 6, 761-777.	3.1	53
82	Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop × weed hybrid generations. Theoretical and Applied Genetics, 2003, 107, 1533-1540.	3.6	51
83	Safety Assessment of Recombinant Green Fluorescent Protein Orally Administered to Weaned Rats. Journal of Nutrition, 2003, 133, 1909-1912.	2.9	51
84	Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora) Tj ETQq	0	/Qyerlock 10
85	Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnology, 2011, 11, 108.	3.3	50
86	Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theoretical and Applied Genetics, 2011, 123, 1193-206.	3.6	49
87	Identification and Molecular Characterization of the Switchgrass AP2/ERF Transcription Factor Superfamily, and Overexpression of PvERF001 for Improvement of Biomass Characteristics for Biofuel. Frontiers in Bioengineering and Biotechnology, 2015, 3, 101.	4.1	49
88	Instrumentation and Methodology for Quantifying GFP Fluorescence in Intact Plant Organs. BioTechniques, 2003, 34, 638-643.	1.8	48
89	Transgenic perennial biofuel feedstocks and strategies for bioconfinement. Biofuels, 2010, 1, 163-176.	2.4	47
90	Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnology for Biofuels, 2019, 12, 15.	6.2	47

#	Article	IF	CITATIONS
91	ATP-Dependent Binding Cassette Transporter G Family Member 16 Increases Plant Tolerance to Abscisic Acid and Assists in Basal Resistance against <i>Pseudomonas syringae</i> DC3000 Â Â. Plant Physiology, 2014, 166, 879-888.	4.8	46
92	Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta, 2008, 227, 427-37.	3.2	45
93	Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are <i>Bacillus thuringiensis</i> (Bt) plants more susceptible to nontarget herbivores in future climate?. Global Change Biology, 2008, 14, 1437-1454.	9.5	45
94	Pathogen Phytosensing: Plants to Report Plant Pathogens. Sensors, 2008, 8, 2628-2641.	3.8	45
95	Aqueous extracts of Hibiscus sabdariffa calyces as an antimicrobial rinse on hot dogs against Listeria monocytogenes and methicillin-resistant Staphylococcus aureus. Food Control, 2014, 40, 274-277.	5.5	45
96	Transgenic switchgrass (<i>Panicum virgatum</i> L.) biomass is increased by overexpression of switchgrass sucrose synthase (<i>PvSUS1</i>). Biotechnology Journal, 2015, 10, 552-563.	3.5	45
97	Stable Transformation of Ferns Using Spores as Targets: Pteris vittata and Ceratopteris thalictroides. Plant Physiology, 2013, 163, 648-658.	4.8	44
98	Biofuels and biocontainment. Nature Biotechnology, 2007, 25, 283-284.	17.5	43
99	Soybean kinome: functional classification and gene expression patterns. Journal of Experimental Botany, 2015, 66, 1919-1934.	4.8	43
100	Progress of targeted genome modification approaches in higher plants. Plant Cell Reports, 2016, 35, 1401-1416.	5.6	43
101	Computational discovery of soybean promoter <i>cis</i> â€regulatory elements for the construction of soybean cyst nematodeâ€inducible synthetic promoters. Plant Biotechnology Journal, 2014, 12, 1015-1026.	8.3	42
102	Fluorescent nanoparticles: Sensing pathogens and toxins in foods and crops. Trends in Food Science and Technology, 2012, 28, 143-152.	15.1	41
103	Phenotypic Plasticity and Genetic Variation of Vaccinium macrocarpon, the American Cranberry. I. Reaction Norms of Clones from Central and Marginal Populations in a Common Garden. International Journal of Plant Sciences, 1995, 156, 687-697.	1.3	40
104	Monitoring transgenic plants using in vivo markers. Nature Biotechnology, 1996, 14, 682-682.	17.5	40
105	Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations. BMC Biotechnology, 2009, 9, 93.	3.3	40
106	Misconduct versus Honest Error and Scientific Disagreement. Accountability in Research, 2012, 19, 56-63.	2.4	39
107	Advances in biotechnology and genomics of switchgrass. Biotechnology for Biofuels, 2013, 6, 77.	6.2	39

 $Identification \ and \ Overexpression \ of \ a \ Knotted 1-Like \ Transcription \ Factor \ in \ Switch grass \ (Panicum) \ Tj \ ETQq0 \ 0 \ 0 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog ck \ 10 \ Tf \ 50 \ rgg_{3.6}^{BT} \ /Overlog \ rgg_{3.6}^{B$

7

108

#	Article	IF	CITATIONS
109	TransgenicBt-producingBrassica napus:Plutella xylostellaselection pressure and fitness of weedy relatives. Environmental Biosafety Research, 2003, 2, 263-276.	1.1	39
110	Manipulating micro <scp>RNA</scp> s for improved biomass and biofuels from plant feedstocks. Plant Biotechnology Journal, 2015, 13, 337-354.	8.3	37
111	Spatial and temporal patterns of green fluorescent protein (GFP) fluorescence during leaf canopy development in transgenic oilseed rape, Brassica napus L Plant Cell Reports, 2003, 22, 338-343.	5.6	36
112	Evaluation of Fern and Moss Proteinâ∈Based Defenses Against Phytophagous Insects. International Journal of Plant Sciences, 2006, 167, 111-117.	1.3	36
113	Antimicrobial Activity of Hibiscus sabdariffa Aqueous Extracts against Escherichia coli O157:H7 and Staphylococcus aureus in a Microbiological Medium and Milk of Various Fat Concentrations. Journal of Food Protection, 2014, 77, 262-268.	1.7	36
114	MoChlo: A Versatile, Modular Cloning Toolbox for Chloroplast Biotechnology. Plant Physiology, 2019, 179, 943-957.	4.8	36
115	Stable Bacillus thuringiensis (Bt) toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer. Molecular Ecology, 2004, 13, 237-241.	3.9	35
116	Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific. Theoretical and Applied Genetics, 2009, 118, 359-70.	3.6	35
117	Fitness and maternal effects in hybrids formed between transgenic oilseed rape (<i>Brassica napus</i>) Tj ETQq1 2009, 65, 753-760.	1 0.78431 3.4	4 rgBT /Ove
118	Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants. Plant Cell Reports, 2011, 30, 325-334.	5.6	34
119	Very bright orange fluorescent plants: endoplasmic reticulum targeting of orange fluorescent proteins as visual reporters in transgenic plants. BMC Biotechnology, 2012, 12, 17.	3.3	34
120	Functional Analysis of Cellulose Synthase CesA4 and CesA6 Genes in Switchgrass (Panicum virgatum) by Overexpression and RNAi-Mediated Gene Silencing. Frontiers in Plant Science, 2018, 9, 1114.	3.6	34
121	Transcriptomic Analysis Identifies New Non-Target Site Glyphosate-Resistance Genes in Conyza bonariensis. Plants, 2019, 8, 157.	3.5	31
122	Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle. Transgenic Research, 2006, 15, 501-514.	2.4	30
123	Bacterial pathogen phytosensing in transgenic tobacco and <i><scp>A</scp>rabidopsis</i> plants. Plant Biotechnology Journal, 2013, 11, 43-52.	8.3	30
124	Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnology for Biofuels, 2017, 10, 12.	6.2	30
125	Phytopathogen-induced changes to plant methylomes. Plant Cell Reports, 2018, 37, 17-23.	5.6	30
126	Transgenic switchgrass (<i>Panicum virgatum</i> L.) targeted for reduced recalcitrance to bioconversion: a 2â€year comparative analysis of fieldâ€grown lines modified for target gene or genetic element expression. Plant Biotechnology Journal, 2017, 15, 688-697.	8.3	29

#	Article	IF	Citations
127	Aqueous Extracts of Yerba Mate (Ilex paraguariensis) as a Natural Antimicrobial against Escherichia coll O157:H7 in a Microbiological Medium and pH 6.0 Apple Juice. Journal of Food Protection, 2012, 75, 753-757.	1.7	28
128	Gene flow matters in switchgrass (<i>Panicum virgatum</i> L.), a potential widespread biofuel feedstock. Ecological Applications, 2012, 22, 3-7.	3.8	28
129	Climbing plants: attachment adaptations and bioinspired innovations. Plant Cell Reports, 2018, 37, 565-574.	5.6	28
130	Selection of Bioassay Method Influences Detection of Annual Bluegrass Resistance to Mitoticâ€Inhibiting Herbicides. Crop Science, 2009, 49, 1088-1095.	1.8	27
131	Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. New Phytologist, 2020, 227, 168-184.	7. 3	27
132	Rational design and testing of abiotic stressâ€inducible synthetic promoters from poplar <i>cis</i> , 1354-1369.	8.3	27
133	Drosera rotundifolia growth and nutrition in a natural population with special reference to the significance of insectivory. Canadian Journal of Botany, 1992, 70, 1409-1416.	1.1	26
134	Movement and Survival of Diamondback Moth (Lepidoptera: Plutellidae) Larvae in Mixtures of Nontransgenic and Transgenic Canola Containing a cryla (c) Gene of Bacillus thuringiensis. Environmental Entomology, 1998, 27, 649-656.	1.4	26
135	capability from immature cotyledons. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 543-548.	2.1	26
136	Characterization of English ivy (Hedera helix) adhesion force and imaging using atomic force microscopy. Journal of Nanoparticle Research, 2011, 13, 1029-1037.	1.9	26
137	Development and use of a switchgrass (Panicum virgatum L.) transformation pipeline by the BioEnergy Science Center to evaluate plants for reduced cell wall recalcitrance. Biotechnology for Biofuels, 2017, 10, 309.	6.2	26
138	Advanced editing of the nuclear and plastid genomes in plants. Plant Science, 2018, 273, 42-49.	3.6	26
139	Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility. Plant Biotechnology Journal, 2018, 16, 39-49.	8.3	26
140	Genomic analysis of the response of Arabidopsis thaliana to trinitrotoluene as revealed by cDNA microarrays. Plant Science, 2005, 168, 1409-1424.	3.6	25
141	Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Functional and Integrative Genomics, 2009, 9, 537-47.	3.5	25
142	Nanoparticle biofabrication using English ivy (Hedera helix). Journal of Nanobiotechnology, 2012, 10, 41.	9.1	25
143	Effects of Produced Water on Soil Characteristics, Plant Biomass, and Secondary Metabolites. Journal of Environmental Quality, 2015, 44, 1938-1947.	2.0	25
144	Switchgrass (Panicum virgatum L.) cell suspension cultures: Establishment, characterization, and application. Plant Science, 2011, 181, 712-715.	3.6	24

#	Article	IF	Citations
145	Characterization of physicochemical properties of ivy nanoparticles for cosmetic application. Journal of Nanobiotechnology, $2013,11,3.$	9.1	24
146	Movement of transgenic plantâ€expressed Bt Cry1Ac proteins through high trophic levels. Journal of Applied Entomology, 2008, 132, 1-11.	1.8	23
147	Transgenic soybean overexpressing <i>Gm<scp>SAMT</scp>1</i> exhibits resistance to multipleâ€ <scp>HG</scp> types of soybean cyst nematode <i>Heterodera glycines</i> Plant Biotechnology Journal, 2016, 14, 2100-2109.	8.3	23
148	GM crop dataâ€"agronomy and ecology in tandem. Nature Biotechnology, 2001, 19, 3-3.	17.5	22
149	Isolation and chemical analysis of nanoparticles from English ivy (<i>Hedera helix</i> L.). Journal of the Royal Society Interface, 2013, 10, 20130392.	3.4	22
150	The effects of the presence of Bt-transgenic oilseed rape in wild mustard populations on the rhizosphere nematode and microbial communities. Science of the Total Environment, 2015, 530-531, 263-270.	8.0	22
151	Differential gene expression of Chlamydomonas reinhardtii in response to 2,4,6-trinitrotoluene (TNT) using microarray analysis. Plant Science, 2004, 167, 1109-1122.	3.6	21
152	Physiological and transcriptional responses of Baccharis halimifolia to the explosive "composition B― (RDX/TNT) in amended soil. Environmental Science and Pollution Research, 2014, 21, 8261-8270.	5.3	21
153	Fieldâ€grown transgenic switchgrass (<i>Panicum virgatum</i> L.) with altered lignin does not affect soil chemistry, microbiology, and carbon storage potential. GCB Bioenergy, 2017, 9, 1100-1109.	5.6	20
154	High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV. Frontiers in Plant Science, 2020, 11, 574073.	3.6	20
155	Epigenetic Footprints of CRISPR/Cas9-Mediated Genome Editing in Plants. Frontiers in Plant Science, 2019, 10, 1720.	3.6	20
156	Association of Edaphic Factors and Vegetation in Several Isolated Appalachian Peat Bogs. Bulletin of the Torrey Botanical Club, 1993, 120, 128.	0.6	19
157	Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes. Plant Cell Reports, 2007, 26, 1001-1010.	5.6	19
158	Sustainable Use of Biotechnology for Bioenergy Feedstocks. Environmental Management, 2010, 46, 531-538.	2.7	19
159	An efficient and rapid transgenic pollen screening and detection method using flow cytometry. Biotechnology Journal, 2011, 6, 118-123.	3.5	19
160	Gene use restriction technologies for transgenic plant bioconfinement. Plant Biotechnology Journal, 2013, 11, 649-658.	8.3	19
161	Next-generation precision genome engineering and plant biotechnology. Plant Cell Reports, 2016, 35, 1397-1399.	5.6	19
162	The Q-System as a Synthetic Transcriptional Regulator in Plants. Frontiers in Plant Science, 2020, 11, 245.	3.6	19

#	Article	IF	CITATIONS
163	Pathogen inducible reporting in transgenic tobacco using a GFP construct. Plant Science, 2003, 165, 213-219.	3.6	18
164	Effects of pollen-synthesized green fluorescent protein on pollen grain fitness. Sexual Plant Reproduction, 2004, 17, 49-53.	2.2	18
165	Laser-Induced Fluorescence Imaging and Spectroscopy of GFP Transgenic Plants. Journal of Fluorescence, 2005, 15, 697-705.	2.5	18
166	Narrow terahertz attenuation signatures <i>in Bacillus thuringiensis</i> . Journal of Biophotonics, 2014, 7, 818-824.	2.3	18
167	Synthetic <scp>TAL</scp> effectors for targeted enhancement of transgene expression in plants. Plant Biotechnology Journal, 2014, 12, 436-446.	8.3	18
168	The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea. Transgenic Research, 2015, 24, 537-547.	2.4	18
169	A Robotic Platform for High-throughput Protoplast Isolation and Transformation. Journal of Visualized Experiments, 2016, , .	0.3	18
170	Greenhouse and field evaluations of transgenic canola against diamondback moth, Plutella xylostella, and corn earworm, Helicoverpa zea. Entomologia Experimentalis Et Applicata, 1998, 88, 17-24.	1.4	17
171	Age-related increase in levels of insecticidal protein in the progenies of transgenic oilseed rape and its efficacy against a susceptible strain of diamondback moth. Annals of Applied Biology, 2005, 147, 227-234.	2.5	17
172	Novel software package for cross-platform transcriptome analysis (CPTRA). BMC Bioinformatics, 2009, 10, S16.	2.6	17
173	Optoelectronic Signatures of DNA-Based Hybrid Nanostructures. IEEE Nanotechnology Magazine, 2011, 10, 35-43.	2.0	17
174	A proteomic analysis of seeds from Bt-transgenic Brassica napus and hybrids with wild B. juncea. Scientific Reports, 2015, 5, 15480.	3.3	17
175	Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels. Frontiers in Plant Science, 2016, 7, 675.	3.6	17
176	Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass. Biotechnology for Biofuels, 2018, 11, 122.	6.2	17
177	Cellâ€Typeâ€Specific Proteomics Analysis of a Small Number of Plant Cells by Integrating Laser Capture Microdissection with a Nanodroplet Sample Processing Platform. Current Protocols, 2021, 1, e153.	2.9	17
178	Letter 1: Chloroplast-transgenic plants are not a gene flow panacea. Nature Biotechnology, 1998, 16, 401-401.	17.5	16
179	Transgene escape and transplastomics. Nature Biotechnology, 1999, 17, 330-331.	17.5	16
180	Laboratory studies of the effects of reduced prey choice caused by Bt plants on a predatory insect. Bulletin of Entomological Research, 2005, 95, 243.	1.0	16

#	Article	IF	CITATIONS
181	Windâ€mediated horseweed (C onyza canadensis) gene flow: pollen emission, dispersion, and deposition. Ecology and Evolution, 2015, 5, 2646-2658.	1.9	16
182	Becoming weeds. Nature Genetics, 2017, 49, 654-655.	21.4	16
183	Imaging of multiple fluorescent proteins in canopies enables synthetic biology in plants. Plant Biotechnology Journal, 2021, 19, 830-843.	8.3	16
184	Time Course Field Analysis of COMT-Downregulated Switchgrass: Lignification, Recalcitrance, and Rust Susceptibility. Bioenergy Research, 2016, 9, 1087-1100.	3.9	15
185	Ecological Functions of Terpenoids in Changing Climates. , 2013, , 2913-2940.		14
186	Stable Bacillus thuringiensis transgene introgression from Brassica napus to wild mustard B. juncea. Plant Science, 2014, 227, 45-50.	3.6	14
187	Engineered selective plant male sterility through pollenâ€specific expression of the Eco RI restriction endonuclease. Plant Biotechnology Journal, 2016, 14, 1281-1290.	8.3	14
188	Development and validation of a novel and robust cell culture system in soybean (Glycine max (L.)) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
189	Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.). Biotechnology for Biofuels, 2019, 12, 290.	6.2	14
190	Miniâ€synplastomes for plastid genetic engineering. Plant Biotechnology Journal, 2022, 20, 360-373.	8.3	14
191	Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant and -sensitive hairy fleabane in response to glyphosate treatment. Bragantia, 2019, 78, 379-396.	1.3	14
192	The performance of pathogenic bacterial phytosensing transgenic tobacco in the field. Plant Biotechnology Journal, 2014, 12, 755-764.	8.3	13
193	Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii. PLoS ONE, 2015, 10, e0139195.	2.5	13
194	Are university researchers at risk for patent infringement?. Nature Biotechnology, 2007, 25, 1225-1228.	17.5	12
195	Pharming in crop commodities. Nature Biotechnology, 2008, 26, 1222-1223.	17.5	12
196	Integrated Metagenomics and Metatranscriptomics Analyses of Root-Associated Soil from Transgenic Switchgrass. Genome Announcements, 2014, 2, .	0.8	12
197	Inheritance of GFP-Bt transgenes fromBrassicaÂnapusin backcrosses with three wildB.Ârapaaccessions. Environmental Biosafety Research, 2004, 3, 45-54.	1.1	12
198	Phenotypic Plasticity and Genetic Variation of Vaccinium macrocarpon, the American Cranberry. II. Reaction Norms and Spatial Clonal Patterns in Two Marginal Populations. International Journal of Plant Sciences, 1995, 156, 698-708.	1.3	12

#	Article	IF	Citations
199	Expression of green fluorescent protein in pollen of oilseed rape (Brassica napus L.) and its utility for assessing pollen movement in the field. Biotechnology Journal, 2006, 1, 1147-1152.	3.5	11
200	Transformation and segregation of GFP fluorescence and glyphosate resistance in horseweed (Conyza) Tj ETQ	70 0 0 ggBT	/Overlock 10
201	Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent. Environmental Pollution, 2009, 157, 181-185.	7.5	11
202	Highâ€throughput functional marker assay for detection of <i>Xa/xa</i> and <i>fgr</i> genes in rice (<i>Oryza sativa</i> L.). Electrophoresis, 2011, 32, 2216-2222.	2.4	11
203	Genetic diversity and structure of natural and agronomic switchgrass (Panicum virgatum L.) populations. Genetic Resources and Crop Evolution, 2013, 60, 1057-1068.	1.6	11
204	Field Studies on Dynamic Pollen Production, Deposition, and Dispersion of Glyphosate-Resistant Horseweed (Conyza canadensis). Weed Science, 2016, 64, 101-111.	1.5	11
205	Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement. Biotechnology for Biofuels, 2017, 10, 255.	6.2	11
206	The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression. Plant Cell Reports, 2018, 37, 1419-1429.	5.6	11
207	Crops Come from Wild Plants â€" How Domestication, Transgenes, and Linkage Together Shape Ferality. , 2005, , 9-30.		11
208	Expression of Bt cry1Ac in transgenic oilseed rape in China and transgenic performance of intraspecific hybrids against Helicoverpa armigera larvae. Annals of Applied Biology, 2007, 150, 141-147.	2.5	10
209	FLP/FRT Recombination from Yeast: Application of a Two Gene Cassette Scheme as an Inducible System in Plants. Sensors, 2010, 10, 8526-8535.	3.8	10
210	Mega-Nano Detection of Foodborne Pathogens and Transgenes Using Molecular Beacon and Semiconductor Quantum Dot Technologies. IEEE Transactions on Nanobioscience, 2013, 12, 233-238.	3.3	10
211	Atmospheric pollen dispersion from herbicide-resistant horseweed (Conyza canadensis L.). Aerobiologia, 2017, 33, 393-406.	1.7	10
212	A profilin gene promoter from switchgrass (Panicum virgatum L.) directs strong and specific transgene expression to vascular bundles in rice. Plant Cell Reports, 2018, 37, 587-597.	5.6	10
213	An Automated Protoplast Transformation System. Methods in Molecular Biology, 2019, 1917, 355-363.	0.9	10
214	Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Scientific Reports, 2020, 10, 21144.	3.3	10
215	Computational Ranking of Yerba Mate Small Molecules Based on Their Predicted Contribution to Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus. PLoS ONE, 2015, 10, e0123925.	2.5	10
216	Correlated Expression of gfp and Bt cry1Ac Gene Facilitates Quantification of Transgenic Hybridization between Brassicas. Plant Biology, 2006, 8, 723-730.	3.8	9

#	Article	IF	CITATIONS
217	An <i>Arabidopsis thaliana</i> ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to <i>Escherichia coli</i> Microbial Biotechnology, 2008, 1, 191-195.	4.2	9
218	Biomass feedstock: diversity as a solution. Biofuels, 2011, 2, 491-493.	2.4	9
219	Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. BMC Biotechnology, 2017, 17, 40.	3.3	9
220	Plant metabolic engineering in the synthetic biology era: plant chassis selection. Plant Cell Reports, 2018, 37, 1357-1358.	5.6	9
221	Plants to Remotely Detect Human Decomposition?. Trends in Plant Science, 2020, 25, 947-949.	8.8	9
222	Kinaseâ€dead mutation: A novel strategy for improving soybean resistance to soybean cyst nematode <i>Heterodera glycines</i> . Molecular Plant Pathology, 2022, 23, 417-430.	4.2	9
223	Responses of (i>Drosera capensis (i>and (i>D. binata (i>var. (i>multifida (i) (Droseraceae) to manipulations of insect availability and soil nutrient levels. New Zealand Journal of Botany, 1993, 31, 385-390.	1.1	8
224	Improved tissue culture conditions for the emerging C4 model Panicum hallii. BMC Biotechnology, 2017, 17, 39.	3.3	8
225	Houseplants as home health monitors. Science, 2018, 361, 229-230.	12.6	8
226	Development and field assessment of transgenic hybrid switchgrass for improved biofuel traits. Euphytica, 2020, 216, 1.	1.2	8
227	Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops. Biotechnology in Agriculture and Forestry, 2010, , 285-297.	0.2	8
228	Press before paperâ€"when media and science collide. Nature Biotechnology, 2003, 21, 353-354.	17.5	7
229	Monitoring the Environmental Impact of TiO\$_{f 2}\$ Nanoparticles Using a Plant-Based Sensor Network. IEEE Nanotechnology Magazine, 2013, 12, 182-189.	2.0	7
230	Expanding the Scope of Responsible Conduct of Research Instruction. Accountability in Research, 2014, 21, 321-327.	2.4	7
231	â€~Fukusensor:' a genetically engineered plant for reporting <scp>DNA</scp> damage in response to gamma radiation. Plant Biotechnology Journal, 2014, 12, 1329-1332.	8.3	7
232	One species to another: sympatric Bt transgene gene flow from Brassica napus alters the reproductive strategy of wild relative Brassica juncea under herbivore treatment. Annals of Botany, 2018, 122, 617-625.	2.9	7
233	Lighting the Way: Advances in Engineering Autoluminescent Plants. Trends in Plant Science, 2020, 25, 1176-1179.	8.8	7
234	Fluorescent Proteins in Transgenic Plants. Reviews in Fluorescence, 2010, , 387-403.	0.5	7

#	Article	IF	Citations
235	The Effects of Seed Size on Hybrids Formed between Oilseed Rape (Brassica napus) and Wild Brown Mustard (B. juncea). PLoS ONE, 2012, 7, e39705.	2.5	7
236	Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum) Using UAV-Based Imagery. Plants, 2021, 10, 2726.	3.5	7
237	Population genetic variation in rare and endangered Iliamna (Malvaceae) in Virginia. Biological Journal of the Linnean Society, 1996, 58, 357-369.	1.6	6
238	Plant functional genomics: beyond the parts list. Trends in Plant Science, 2005, 10, 561-562.	8.8	6
239	China–U.S. workshop on biotechnology of bioenergy plants. Ecotoxicology, 2010, 19, 1-3.	2.4	6
240	Abiotic stress and transgenics: Implications for reproductive success and crop-to-wild gene flow in Brassicas. Basic and Applied Ecology, 2010, 11, 513-521.	2.7	6
241	Bio-Synthesis of Gold Nanoparticles Using English ivy (<l>Hedera helix</l>). Journal of Nanoscience and Nanotechnology, 2013, 13, 1649-1659.	0.9	6
242	Morphology and ploidy level determination of Pteris vittata callus during induction and regeneration. BMC Biotechnology, 2014, 14, 96.	3.3	6
243	Metabolomic analysis of the mechanism of action of yerba mate aqueous extract on Salmonella enterica serovar Typhimurium. Metabolomics, 2017, 13, 1.	3.0	6
244	Elevating the conversation about GE crops. Nature Biotechnology, 2017, 35, 302-304.	17.5	6
245	The TcEG1 beetle (Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release. Biotechnology for Biofuels, 2017, 10, 230.	6.2	6
246	Silencing Folylpolyglutamate Synthetase1 (FPGS1) in Switchgrass (Panicum virgatum L.) Improves Lignocellulosic Biofuel Production. Frontiers in Plant Science, 2020, 11, 843.	3.6	6
247	Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement. Biotechnology in Agriculture and Forestry, 2010, , 299-315.	0.2	6
248	Proteinase inhibitors in legume herbivore defense: from natural to genetically engineered protectants. Plant Cell Reports, 2021, , 1.	5.6	6
249	Specific Bacterial Pathogen Phytosensing Is Enabled by a Synthetic Promoter-Transcription Factor System in Potato. Frontiers in Plant Science, 2022, 13, 873480.	3.6	5
250	Green Fluorescent Protein Quantification in Whole Plants., 2005, 286, 215-226.		4
251	Genes and Traits of Interest for Transgenic Plants. , 0, , 193-216.		4
252	Assessing the bioconfinement potential of a Nicotianahybrid platform for use in plant molecular farming applications. BMC Biotechnology, 2013, 13, 63.	3.3	4

#	Article	IF	Citations
253	Photosynthetic parameters of switchgrass (Panicum virgatum) under low radiation: Influence of stable overexpression of MiscanthusA—giganteus PPDK on responses to light and CO2 under warm and cool growing conditions. New Negatives in Plant Science, 2015, 1-2, 23-32.	0.9	4
254	The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth. Transgenic Research, 2015, 24, 1043-1053.	2.4	4
255	Methods for suspension culture, protoplast extraction, and transformation of highâ€biomass yielding perennial grass <i>Arundo donax</i> . Biotechnology Journal, 2016, 11, 1657-1666.	3.5	4
256	Interactions in Entomology: Utilization and Management of New Genetic Techniques for Insect Control in Southern Field Crops. Journal of Entomological Science, 1999, 34, 2-7.	0.3	4
257	Effects of field-grown transgenic switchgrass carbon inputs on soil organic carbon cycling. PeerJ, 2019, 7, e7887.	2.0	4
258	Patent reform in the US: what's at stake for pharmaceutical innovation?. Expert Opinion on Therapeutic Patents, 2010, 20, 603-608.	5.0	3
259	Hyperspectral studies of transgenic oilseed rape. International Journal of Remote Sensing, 2011, 32, 1095-1103.	2.9	3
260	Genetic diversity analysis of switchgrass (Panicum virgatum L.) populations using microsatellites and chloroplast sequences. Agroforestry Systems, 2014, 88, 823-834.	2.0	3
261	Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits. Euphytica, 2016, 209, 341-355.	1.2	3
262	A Robust Method to Quantify Cell Wall Bound Phenolics in Plant Suspension Culture Cells Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Frontiers in Plant Science, 2020, 11, 574016.	3.6	3
263	Arabidopsis Is Not a Weed, and Mostly Not a Good Model for Weed Genomics; There Is No Good Model for Weed Genomics., 0,, 25-32.		3
264	US–China collaborative biofuel research: towards a global solution for petroleum replacement. Biofuels, 2011, 2, 487-489.	2.4	2
265	An orange fluorescent protein tagging system for real-time pollen tracking. BMC Research Notes, 2013, 6, 383.	1.4	2
266	Images and imagination: the role of figures in plant cell and molecular biology publications. Plant Cell Reports, 2014, 33, 829-830.	5.6	2
267	An exposure pathwayâ€based risk assessment system for <scp>GM</scp> plants. Plant Biotechnology Journal, 2019, 17, 1859-1861.	8.3	2
268	Green Fluorescent Protein in Transgenic Plants: Brassica Transformation., 2002, 183, 245-252.		1
269	Transgene Dispersal Through Pollen. , 2005, 286, 365-374.		1
270	Rapeseed Biotechnology. Advances in Botanical Research, 2007, , 435-449.	1.1	1

#	Article	IF	Citations
271	Intellectual Property Aspects of Plant Transformation. , 2011, , 243-270.		1
272	Bioenergy plants in the United States and China. Plant Science, 2011, 181, 621-622.	3.6	1
273	Aluminium accumulation in Pteris cretica and trace element uptake in vegetation growing on an abandoned aluminium smelter site in Knoxville, TN, USA. International Journal of Environment and Pollution, 2011, 45, 310.	0.2	1
274	The Science of Gene Flow in Agriculture and Its Role in Coexistence. , 2016, , 13-37.		1
275	Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics, 2003, 4, 844-844.	16.3	1
276	Novel Candidate Genes Differentially Expressed in Glyphosate-Treated Horseweed (Conyza canadensis). Genes, 2021, 12, 1616.	2.4	1
277	High-Throughput Transfection and Analysis of Soybean (Glycine max) Protoplasts. Methods in Molecular Biology, 2022, 2464, 245-259.	0.9	1
278	<title>Genetically modified plants for law enforcement applications</title> ., 2002,,.		0
279	Genetically modified plants for tactical systems applications. , 2002, 4743, 225.		0
280	Correlated Expression of gfp and Bt cry1Ac Gene Facilitates Quantification of Transgenic Hybridization between Brassicas. Plant Biology, 2006, 8, 861-863.	3.8	0
281	Detecting the environmental impact of nanoparticles using plant-based biosensors. , 2011, , .		0
282	Online tool for GR horseweed (Conyza canadensis) gene flow. , 2013, , .		0
283	GFP IN PLANT BIOTECHNOLOGY AND AGRICULTURE., 2001,,.		0
284	Songwriting and science. Science, 2021, , .	12.6	0
285	Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.)) Tj ETQq1 1 0.7845	314.ggBT /	Overlock 10
286	The Genetic Architecture of Nitrogen Use Efficiency in Switchgrass (Panicum virgatum L.). Frontiers in Plant Science, 2022, 13, 893610.	3.6	0