Ashim Dhakal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8629565/publications.pdf

Version: 2024-02-01

623734 888059 1,314 32 14 17 citations g-index h-index papers 32 32 32 1440 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits. Journal of Lightwave Technology, 2017, 35, 639-649.	4.6	232
2	Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532–900 nm Wavelength Window Fabricated Within a CMOS Pilot Line. IEEE Photonics Journal, 2013, 5, 2202809-2202809.	2.0	204
3	Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]. Photonics Research, 2015, 3, B47.	7.0	173
4	Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. Optics Letters, 2014, 39, 4025.	3.3	117
5	Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Optics Letters, 2015, 40, 2177.	3.3	110
6	Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform. ACS Photonics, 2016, 3, 102-108.	6.6	95
7	Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers. ACS Photonics, 2016, 3, 2141-2149.	6.6	70
8	Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. Optics Express, 2015, 23, 27391.	3.4	54
9	Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. Optics Express, 2015, 23, 3088.	3.4	54
10	Near-Infrared Grating Couplers for Silicon Nitride Photonic Wires. IEEE Photonics Technology Letters, 2012, 24, 1700-1703.	2.5	46
11	Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy. Materials, 2017, 10, 140.	2.9	34
12	Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy. Interface Focus, 2016, 6, 20160015.	3.0	30
13	Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials. Optica, 2018, 5, 328.	9.3	30
14	CORNERSTONE's Silicon Photonics Rapid Prototyping Platforms: Current Status and Future Outlook. Applied Sciences (Switzerland), 2020, 10, 8201.	2.5	23
15	Spectroscopy-on-chip applications of silicon photonics. Proceedings of SPIE, 2013, , .	0.8	7
16	Non-diffracting beam generated from a photonic integrated circuit based axicon-like lens. Optics Express, 2021, 29, 10480.	3.4	6
17	Spectroscopic sensing and applications in Silicon Photonics. , 2017, , .		5
18	Enhancement of Raman Scattering Efficiency by a Metallic Nano-antenna on Top of a High Index Contrast Waveguide. , 2013, , .		4

#	Article	IF	CITATIONS
19	Development of a CMOS Compatible Biophotonics Platform Based on SiN Nanophotonic Waveguides. , 2014, , .		3
20	Silicon-nitride waveguides for on-chip Raman spectroscopy. , 2014, , .		3
21	Nanophotonic lab-on-a-chip Raman sensors: A sensitivity comparison with confocal Raman microscope., 2015,,.		3
22	Enhancement of light absorption, scattering and emission in high index contrast waveguides. , 2013, , .		3
23	Characterization of PECVD silicon nitride photonic components at 532 and 900 nm wavelength. Proceedings of SPIE, 2014, , .	0.8	2
24	Lab-on-a-chip Raman sensors outperforming Raman microscopes. , 2016, , .		2
25	Enhanced Spontaneous Raman Signal Collected Evanescently by Silicon Nitride Slot Waveguides. , 2015, , .		2
26	Coherent anti-Stokes Raman spectroscopy on chip. , 2015, , .		1
27	Microscope-less lab-on-a-chip Raman spectroscopy of cell-membranes. , 2016, , .		1
28	Resonant enhancement mechanisms in lab-on-chip Raman spectroscopy on a silicon nitride waveguide platform. , $2014, , .$		0
29	Silicon photonics for on-chip spectrophotometry. , 2015, , .		0
30	Super-Resolution Limit for Raman Spectroscopy and Optical Coherence Tomography. , 2018, , .		0
31	Surface Enhanced Raman Spectroscopy on Single Mode Nanophotonic-Plasmonic Waveguides. , 2016, , .		0
32	Azimuthally Apodized Focusing Gratings. , 2020, , .		0