
Maria Rita Rippo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8628798/publications.pdf Version: 2024-02-01

Μλαίλ Ριτλ Ρίδο

#	Article	IF	CITATIONS
1	Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mechanisms of Ageing and Development, 2022, 204, 111667.	4.6	12
2	Anti-inflammatory effect of SGLT-2 inhibitors via uric acid and insulin. Cellular and Molecular Life Sciences, 2022, 79, 273.	5.4	40
3	Curcumin, Polydatin and Quercetin Synergistic Activity Protects from High-Glucose-Induced Inflammation and Oxidative Stress. Antioxidants, 2022, 11, 1037.	5.1	8
4	CD31+ Extracellular Vesicles From Patients With Type 2 Diabetes Shuttle a miRNA Signature Associated With Cardiovascular Complications. Diabetes, 2021, 70, 240-254.	0.6	38
5	Cellular senescence and senescence-associated secretory phenotype (SASP) in aging process. , 2021, , 75-88.		2
6	Anti-SASP and anti-inflammatory activity of resveratrol, curcumin and \hat{l}^2 -caryophyllene association on human endothelial and monocytic cells. Biogerontology, 2021, 22, 297-313.	3.9	21
7	miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Research Reviews, 2021, 70, 101374.	10.9	100
8	MicroRNAs as Factors in Bidirectional Crosstalk Between Mitochondria and the Nucleus During Cellular Senescence. Frontiers in Physiology, 2021, 12, 734976.	2.8	8
9	Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs. Scientific Reports, 2020, 10, 21782.	3.3	14
10	Prevalence of residual inflammatory risk and associated clinical variables in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 1696-1700.	4.4	40
11	Small extracellular vesicles deliver miRâ€21 and miRâ€217 as proâ€senescence effectors to endothelial cells. Journal of Extracellular Vesicles, 2020, 9, 1725285.	12.2	104
12	Pleiotropic effects of polyphenols on glucose and lipid metabolism: Focus on clinical trials. Ageing Research Reviews, 2020, 61, 101074.	10.9	30
13	The Experimental Pathology at Ancona: 50ÂYears of Exciting and Pioneering Research on Human Pathology. , 2020, , 43-55.		0
14	Where Metabolism Meets Senescence: Focus on Endothelial Cells. Frontiers in Physiology, 2019, 10, 1523.	2.8	103
15	MitomiRs in Human Inflamm-aging. , 2019, , 1681-1708.		1
16	Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biology, 2018, 15, 170-181.	9.0	102
17	Differential microRNA expression between decidual and peripheral blood natural killer cells in early pregnancy. Human Reproduction, 2018, 33, 2184-2195.	0.9	18
18	The mitomiR/Bcl-2 axis affects mitochondrial function and autophagic vacuole formation in senescent endothelial cells. Aging, 2018, 10, 2855-2873.	3.1	34

MARIA RITA RIPPO

#	Article	IF	CITATIONS
19	Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Research Reviews, 2018, 48, 87-98.	10.9	80
20	MitomiRs in Human Inflamm-Aging. , 2018, , 1-29.		2
21	Attenuation of Listeria monocytogenes Virulence by Cannabis sativa L. Essential Oil. Frontiers in Cellular and Infection Microbiology, 2018, 8, 293.	3.9	46
22	From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	68
23	Age-related M1/M2 phenotype changes in circulating monocytes from healthy/unhealthy individuals. Aging, 2018, 10, 1268-1280.	3.1	48
24	Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell, 2017, 16, 262-272.	6.7	48
25	Human White Adipocytes Convert Into "Rainbow―Adipocytes In Vitro. Journal of Cellular Physiology, 2017, 232, 2887-2899.	4.1	28
26	Role of inflamma-mitomiRs miR-146a, miR-181a and miR-34a in regulating mitochondrial dysfunction during replicative senescence of human endothelial cells. Free Radical Biology and Medicine, 2017, 108, S98.	2.9	0
27	Mitochondrial (Dys) Function in Inflammaging: Do MitomiRs Influence the Energetic, Oxidative, and Inflammatory Status of Senescent Cells?. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	48
28	Progress of research on microRNAs with diagnostic value in asbestos exposure: A call for method standardization. BioScience Trends, 2017, 11, 105-109.	3.4	6
29	Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta-analysis. Oncotarget, 2016, 7, 58606-58637.	1.8	69
30	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
31	Anti-TNF-α treatment modulates SASP and SASP-related microRNAs in endothelial cells and in circulating angiogenic cells. Oncotarget, 2016, 7, 11945-11958.	1.8	69
32	Endothelial Cell Senescence and Inflammaging: MicroRNAs as Biomarkers and Innovative Therapeutic Tools. Current Drug Targets, 2016, 17, 388-397.	2.1	23
33	Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clinical Epigenetics, 2015, 7, 56.	4.1	83
34	Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging, 2014, 6, 771-786.	3.1	105
35	Circulating miR-21, miR-146a and Fas ligand respond to postmenopausal estrogen-based hormone replacement therapy – A study with monozygotic twin pairs. Mechanisms of Ageing and Development, 2014, 143-144, 1-8.	4.6	45
36	Admission levels of circulating miR-499-5p and risk of death in elderly patients after acute non-ST elevation myocardial infarction. International Journal of Cardiology, 2014, 172, e276-e278.	1.7	46

MARIA RITA RIPPO

#	Article	IF	CITATIONS
37	MitomiRs in human inflamm-aging: A hypothesis involving miR-181a, miR-34a and miR-146a. Experimental Gerontology, 2014, 56, 154-163.	2.8	179
38	Toll like receptor signaling in "inflammaging― microRNA as new players. Immunity and Ageing, 2013, 10, 11.	4.2	114
39	MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age, 2013, 35, 1157-1172.	3.0	172
40	MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Research Reviews, 2013, 12, 1056-1068.	10.9	173
41	Anti-inflammatory effect of ubiquinol-10 on young and senescent endothelial cells via miR-146a modulation. Free Radical Biology and Medicine, 2013, 63, 410-420.	2.9	65
42	Putative miRNAs for the diagnosis of dyslexia, dyspraxia, and specific language impairment. Epigenetics, 2013, 8, 1023-1029.	2.7	6
43	Low FasL levels promote proliferation of human bone marrow-derived mesenchymal stem cells, higher levels inhibit their differentiation into adipocytes. Cell Death and Disease, 2013, 4, e594-e594.	6.3	23
44	Circulating inflamma-miRs in aging and age-related diseases. Frontiers in Genetics, 2013, 4, 121.	2.3	154
45	Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mechanisms of Ageing and Development, 2012, 133, 675-685.	4.6	218
46	Iron topochemistry and surface reactivity of amphibole asbestos: relations with in vitro toxicity. Analytical and Bioanalytical Chemistry, 2012, 402, 871-881.	3.7	17
47	Leukocyte telomere length is associated with complications of Type 2 diabetes mellitus. Diabetic Medicine, 2011, 28, 1388-1394.	2.3	89
48	Dexamethasone Affects FAS-and Serum Deprivation-Induced Cell Death of Human Osteoblastic Cells through Survivin Regulation. International Journal of Immunopathology and Pharmacology, 2010, 23, 1153-1165.	2.1	11
49	Malignant Mesothelioma Resistance to Apoptosis: Recent Discoveries and their Implication for Effective Therapeutic Strategies. Current Medicinal Chemistry, 2008, 15, 631-641.	2.4	22
50	Semaphorin3A signaling controls Fas (CD95)-mediated apoptosis by promoting Fas translocation into lipid rafts. Blood, 2008, 111, 2290-2299.	1.4	89
51	Induction of Stem Cell Factor/c-Kit/Slug Signal Transduction in Multidrug-resistant Malignant Mesothelioma Cells. Journal of Biological Chemistry, 2004, 279, 46706-46714.	3.4	84
52	α-Tocopheryl succinate and TRAIL selectively synergise in induction of apoptosis in human malignant mesothelioma cells. British Journal of Cancer, 2004, 90, 1644-1653.	6.4	59
53	FLIP overexpression inhibits death receptor-induced apoptosis in malignant mesothelial cells. Oncogene, 2004, 23, 7753-7760.	5.9	87
54	Acetylation Suppresses the Proapoptotic Activity of GD3 Ganglioside. Journal of Experimental Medicine, 2002, 196, 1535-1541.	8.5	99

Maria Rita Rippo

#	Article	IF	CITATIONS
55	UVB-induced apoptosis of human dendritic cells: contribution by caspase-dependent and caspase-independent pathways. Blood, 2001, 97, 1803-1808.	1.4	40
56	Lipopolysaccharide induces Jun N-terminal kinase activation in macrophages by a novel Cdc42/Rac-independent pathway involving sequential activation of protein kinase C ζ and phosphatidylcholine-dependent phospholipase C. Blood, 2000, 96, 2592-2598.	1.4	35
57	GD3 ganglioside directly targets mitochondria in a bclâ€2â€controlled fashion. FASEB Journal, 2000, 14, 2047-2054.	0.5	175
58	Lipopolysaccharide induces Jun N-terminal kinase activation in macrophages by a novel Cdc42/Rac-independent pathway involving sequential activation of protein kinase C ζ and phosphatidylcholine-dependent phospholipase C. Blood, 2000, 96, 2592-2598.	1.4	3
59	Lipid and Glycolipid Mediators in CD95-Induced Apoptotic Signaling. Results and Problems in Cell Differentiation, 1999, 23, 65-76.	0.7	3
60	Acidic Sphingomyelinase (ASM) Is Necessary for Fas-induced GD3 Ganglioside Accumulation and Efficient Apoptosis of Lymphoid Cells. Journal of Experimental Medicine, 1998, 187, 897-902.	8.5	155
61	Requirement for GD3 Ganglioside in CD95- and Ceramide-Induced Apoptosis. Science, 1997, 277, 1652-1655.	12.6	404
62	Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase Journal of Experimental Medicine, 1994, 180, 1547-1552.	8.5	526