
Michael Hiller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8628694/publications.pdf Version: 2024-02-01

MICHAEL HILLED

#	Article	IF	CITATIONS
1	Interspecies transcriptomics identify genes that underlie disproportionate foot growth in jerboas. Current Biology, 2022, 32, 289-303.e6.	1.8	13
2	Convergent and lineage-specific genomic differences in limb regulatory elements in limbless reptile lineages. Cell Reports, 2022, 38, 110280.	2.9	18
3	Reconstruction of evolutionary changes in fat and toxin consumption reveals associations with gene losses in mammals: A case study for the lipase inhibitor <i>PNLIPRP1</i> and the xenobiotic receptor <i>NR1I3</i> . Journal of Evolutionary Biology, 2022, 35, 225-239.	0.8	5
4	Phenotyping in the era of genomics: MaTrics—a digital character matrix to document mammalian phenotypic traits. Mammalian Biology, 2022, 102, 235-249.	0.8	2
5	Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. Science Advances, 2022, 8, eabm6494.	4.7	24
6	DENTIST—using long reads for closing assembly gaps at high accuracy. GigaScience, 2022, 11, .	3.3	13
7	Chromosome-length genome assembly and linkage map of a critically endangered Australian bird: the helmeted honeyeater. GigaScience, 2022, 11, .	3.3	8
8	Contradictory Phylogenetic Signals in the Laurasiatheria Anomaly Zone. Genes, 2022, 13, 766.	1.0	7
9	Recapitulating Evolutionary Divergence in a Single <i>Cis</i> -Regulatory Element Is Sufficient to Cause Expression Changes of the Lens Gene <i>Tdrd7</i> . Molecular Biology and Evolution, 2021, 38, 380-392.	3.5	4
10	Decoding bat immunity: the need for a coordinated research approach. Nature Reviews Immunology, 2021, 21, 269-271.	10.6	29
11	Low Threshold for Cutaneous Allergen Sensitization but No Spontaneous Dermatitis or Atopy in FLG-Deficient Mice. Journal of Investigative Dermatology, 2021, 141, 2611-2619.e2.	0.3	8
12	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	13.7	1,139
13	Two high-quality <i>de novo</i> genomes from single ethanol-preserved specimens of tiny metazoans (Collembola). GigaScience, 2021, 10, .	3.3	17
14	Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Current Biology, 2021, 31, 2124-2139.e3.	1.8	30
15	Comparative de novo assembly and annotation of mantle tissue transcriptomes from the Mytilus edulis species complex (M. edulis, M. galloprovincialis, M. trossulus). Marine Genomics, 2020, 51, 100700.	0.4	11
16	Losses of human disease-associated genes in placental mammals. NAR Genomics and Bioinformatics, 2020, 2, lqz012.	1.5	16
17	The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science, 2020, 370, 208-214.	6.0	41
18	Six reference-quality genomes reveal evolution of bat adaptations. Nature, 2020, 583, 578-584.	13.7	210

MICHAEL HILLER

#	Article	IF	CITATIONS
19	Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22311-22322.	3.3	517
20	Convergent Losses of TLR5 Suggest Altered Extracellular Flagellin Detection in Four Mammalian Lineages. Molecular Biology and Evolution, 2020, 37, 1847-1854.	3.5	35
21	A highly contiguous genome assembly of the bat hawkmoth Hyles vespertilio (Lepidoptera: Sphingidae). GigaScience, 2020, 9, .	3.3	8
22	A genome alignment of 120 mammals highlights ultraconserved element variability and placenta-associated enhancers. GigaScience, 2020, 9, .	3.3	29
23	Clathrin's adaptor interaction sites are repurposed to stabilize microtubules during mitosis. Journal of Cell Biology, 2020, 219, .	2.3	15
24	Interspecies transcriptome analyses identify genes that control the development and evolution of limb skeletal proportion. FASEB Journal, 2020, 34, 1-1.	0.2	2
25	Convergent vomeronasal system reduction in mammals coincides with convergent losses of calcium signalling and odorantâ€degrading genes. Molecular Ecology, 2019, 28, 3656-3668.	2.0	18
26	Evolutionary Analysis of Bile Acid-Conjugating Enzymes Reveals a Complex Duplication and Reciprocal Loss History. Genome Biology and Evolution, 2019, 11, 3256-3268.	1.1	11
27	Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Science Advances, 2019, 5, eaaw6671.	4.7	100
28	Odontogenic ameloblast-associated (ODAM) is inactivated in toothless/enamelless placental mammals and toothed whales. BMC Evolutionary Biology, 2019, 19, 31.	3.2	22
29	Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3036-3041.	3.3	78
30	Coding Exon-Structure Aware Realigner (CESAR): Utilizing Genome Alignments for Comparative Gene Annotation. Methods in Molecular Biology, 2019, 1962, 179-191.	0.4	1
31	TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences. Nucleic Acids Research, 2019, 47, e19-e19.	6.5	8
32	RepeatFiller newly identifies megabases of aligning repetitive sequences and improves annotations of conserved non-exonic elements. GigaScience, 2019, 8, .	3.3	22
33	Methods to Detect and Associate Divergence in Cis-Regulatory Elements to Phenotypic Divergence. , 2019, , 113-134.		1
34	The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature, 2018, 554, 56-61.	13.7	191
35	The axolotl genome and the evolution of key tissue formation regulators. Nature, 2018, 554, 50-55.	13.7	463
36	A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nature Communications, 2018, 9, 1215.	5.8	177

MICHAEL HILLER

#	Article	IF	CITATIONS
37	Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nature Communications, 2018, 9, 4737.	5.8	51
38	The genome of the tegu lizard <i>Salvator merianae</i> : combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly. GigaScience, 2018, 7, .	3.3	23
39	REforge associates transcription factor binding site divergence in regulatory elements with phenotypic differences between species. Molecular Biology and Evolution, 2018, 35, 3027-3040.	3.5	12
40	Molecular parallelism in fast-twitch muscle proteins in echolocating mammals. Science Advances, 2018, 4, eaat9660.	4.7	17
41	Loss of Enzymes in the Bile Acid Synthesis Pathway Explains Differences in Bile Composition among Mammals. Genome Biology and Evolution, 2018, 10, 3211-3217.	1.1	23
42	Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Research, 2018, 46, W25-W29.	6.5	107
43	Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. ELife, 2018, 7, .	2.8	160
44	Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals. PLoS Biology, 2018, 16, e2005293.	2.6	69
45	Recurrent loss of HMGCS2 shows that ketogenesis is not essential for the evolution of large mammalian brains. ELife, 2018, 7, .	2.8	32
46	Identification of Genetic Mechanisms that Control Limb Bone Proportions During Mammalian Evolution. FASEB Journal, 2018, 32, lb527.	0.2	0
47	Iterative error correction of long sequencing reads maximizes accuracy and improves contig assembly. Briefings in Bioinformatics, 2017, 18, 1-8.	3.2	31
48	chainCleaner improves genome alignment specificity and sensitivity. Bioinformatics, 2017, 33, 1596-1603.	1.8	33
49	CESAR 2.0 substantially improves speed and accuracy of comparative gene annotation. Bioinformatics, 2017, 33, 3985-3987.	1.8	47
50	Increased alignment sensitivity improves the usage of genome alignments for comparative gene annotation. Nucleic Acids Research, 2017, 45, 8369-8377.	6.5	50
51	Genome-Wide Screens for Molecular Convergent Evolution in Mammals. , 2017, , 297-312.		Ο
52	Transition to an aquatic habitat permitted the repeated loss of the pleiotropic KLK8 gene in mammals. Genome Biology and Evolution, 2017, 9, 3179-3188.	1.1	30
53	A single splice site mutation in human-specific <i>ARHGAP11B</i> causes basal progenitor amplification. Science Advances, 2016, 2, e1601941.	4.7	77
54	Controlling for Phylogenetic Relatedness and Evolutionary Rates Improves the Discovery of Associations Between Species' Phenotypic and Genomic Differences. Molecular Biology and Evolution, 2016, 33, 2135-2150.	3.5	74

MICHAEL HILLER

#	Article	IF	CITATIONS
55	Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation. Nucleic Acids Research, 2016, 44, e103-e103.	6.5	47
56	ldentification and expression patterns of novel long non-coding RNAs in neural progenitors of the developing mammalian cortex. Neurogenesis (Austin, Tex), 2015, 2, e995524.	1.5	15
57	Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell, 2015, 163, 1527-1538.	13.5	251
58	Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish. Nucleic Acids Research, 2013, 41, e151-e151.	6.5	84
59	Hundreds of conserved non-coding genomic regions are independently lost in mammals. Nucleic Acids Research, 2012, 40, 11463-11476.	6.5	48
60	A "Forward Genomics―Approach Links Genotype to Phenotype using Independent Phenotypic Losses among Related Species. Cell Reports, 2012, 2, 817-823.	2.9	133
61	GREAT improves functional interpretation of cis-regulatory regions. Nature Biotechnology, 2010, 28, 495-501.	9.4	3,789
62	Conserved introns reveal novel transcripts in <i>Drosophila melanogaster</i> . Genome Research, 2009, 19, 1289-1300.	2.4	38
63	Widespread and subtle: alternative splicing at short-distance tandem sites. Trends in Genetics, 2008, 24, 246-255.	2.9	60
64	TassDB: a database of alternative tandem splice sites. Nucleic Acids Research, 2007, 35, D188-D192.	6.5	27
65	Phylogenetically widespread alternative splicing at unusual GYNGYN donors. Genome Biology, 2006, 7, R65.	13.9	33
66	Single-Nucleotide Polymorphisms in NAGNAG Acceptors Are Highly Predictive for Variations of Alternative Splicing. American Journal of Human Genetics, 2006, 78, 291-302.	2.6	58
67	Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Research, 2006, 34, e117-e117.	6.5	147
68	Non-EST based prediction of exon skipping and intron retention events using Pfam information. Nucleic Acids Research, 2005, 33, 5611-5621.	6.5	25
69	Creation and disruption of protein features by alternative splicing a novel mechanism to modulate function. Genome Biology, 2005, 6, R58.	13.9	28
70	Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nature Genetics, 2004, 36, 1255-1257.	9.4	201
71	Efficient prediction of alternative splice forms using protein domain homology. In Silico Biology, 2004, 4, 195-208.	0.4	5
72	Vision-related convergent gene losses reveal SERPINE3's unknown role in the eye. ELife, 0, 11, .	2.8	9