Begoña Verdejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8627794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C—H Bonds with Stereoretention. Journal of the American Chemical Society, 2015, 137, 15833-15842.	13.7	149
2	CO2Fixation by Copper(II) Complexes of a Terpyridinophane Aza Receptor. Journal of the American Chemical Society, 2004, 126, 5082-5083.	13.7	94
3	Molecular Recognition of Pyridine <i>N</i> Oxides in Water Using Calix[4]pyrrole Receptors. Journal of the American Chemical Society, 2009, 131, 3178-3179.	13.7	85
4	Modulation of DNA Binding by Reversible Metal-Controlled Molecular Reorganizations of Scorpiand-like Ligands. Journal of the American Chemical Society, 2012, 134, 9644-9656.	13.7	78
5	Sodium and pH responsive hydrogel formation by the supramolecular system calix[4]pyrrole derivative/tetramethylammonium cation. Chemical Communications, 2011, 47, 2017.	4.1	74
6	Hydrogen and Copper Ion-Induced Molecular Reorganizations in Scorpionand-like Ligands. A Potentiometric, Mechanistic, and Solid-State Study. Inorganic Chemistry, 2007, 46, 5707-5719.	4.0	51
7	CO2Fixation by Cu2+and Zn2+Complexes of a Terpyridinophane Aza Receptor. Crystal Structures of Cu2+Complexes, pH-Metric, Spectroscopic, and Electrochemical Studies. Inorganic Chemistry, 2006, 45, 3803-3815.	4.0	46
8	Imidazolate bridged Cu(ii)–Cu(ii) and Cu(ii)–Zn(ii) complexes of a terpyridinophane azamacrocycle: a solution and solid state study. Dalton Transactions, 2007, , 4726.	3.3	41
9	Binuclear Cu2+ complex mediated discrimination between l-glutamate and l-aspartate in water. Chemical Communications, 2005, , 3086.	4.1	40
10	Cation and anion recognition characteristics of open-chain polyamines containing ethylenic and propylenic chains. Inorganica Chimica Acta, 2002, 339, 307-316.	2.4	36
11	Manganese(ii) complexes of scorpiand-like azamacrocycles as MnSOD mimics. Chemical Communications, 2011, 47, 5988.	4.1	35
12	The Sodium Salt of Diethyl 1H-pyrazole-3,5-dicarboxylate as an Efficient Amphiphilic Receptor for Dopamine and Amphetamines. Crystal Structure and Solution Studies. Journal of the American Chemical Society, 2006, 128, 16458-16459.	13.7	33
13	InÂvitro activity of scorpiand-like azamacrocycle derivatives in promastigotes and intracellular amastigotes of Leishmania infantum and Leishmania braziliensis. European Journal of Medicinal Chemistry, 2013, 62, 466-477.	5.5	28
14	Dramatic selectivity differences in the association of DNA and RNA models with new ethylene- and propylene diamine derivatives and their copper complexes. Organic and Biomolecular Chemistry, 2006, 4, 1755-1759.	2.8	26
15	Quantification of CH-Ï€ Interactions Using Calix[4]pyrrole Receptors as Model Systems. Molecules, 2015, 20, 16672-16686.	3.8	26
16	Tritopic phenanthroline and pyridine tail-tied aza-scorpiands. Organic and Biomolecular Chemistry, 2010, 8, 2367.	2.8	24
17	Homo- and heterobinuclear Cu2+ and Zn2+ complexes of abiotic cyclic hexaazapyridinocyclophanes as SOD mimics. Dalton Transactions, 2013, 42, 11194.	3.3	24
18	Stability and kinetics of the acid-promoted decomposition of Cu(ii) complexes with hexaazacyclophanes: kinetic studies as a probe to detect changes in the coordination mode of the macrocycles. Dalton Transactions, 2004, , 94-103.	3.3	23

Begoña Verdejo

#	Article	IF	CITATIONS
19	Hydrogen and Copper Ion Induced Molecular Reorganizations in Two New Scorpiand-Like Ligands Appended with Pyridine Rings. Inorganic Chemistry, 2010, 49, 7016-7027.	4.0	22
20	Cu2+and AMP complexation of enlarged tripodal polyamines. Dalton Transactions, 2006, , 4474-4481.	3.3	21
21	Stabilization of Supramolecular Networks of Polyiodides with Protonated Small Tetra-azacyclophanes. Inorganics, 2019, 7, 48.	2.7	21
22	CO ₂ Fixation and Activation by Cu ^{II} Complexes of 5,5″â€Terpyridinophane Macrocycles. European Journal of Inorganic Chemistry, 2008, 2008, 84-97.	2.0	19
23	Homo- and Heterobinuclear Cu ²⁺ and Zn ²⁺ Complexes of Ditopic Aza Scorpiand Ligands as Superoxide Dismutase Mimics. Inorganic Chemistry, 2017, 56, 13748-13758. Thermodynamic and kinetic studies on the Cu2+ coordination chemistry of a novel binucleating	4.0	19
24	pyridinophane ligandElectronic supplementary information (ESI) available: Table S1: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with ligand L. Table S2: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with macrocycle L1. Fig. S1: Variation of some selected 13C chemical shifts as a function of pH. See	3.3	17
25	http://www.rsc.org/suppdata/dt/b2/b209013a/. Dalton Transactions, 2003, , 1186-1193. Hydrogen-ion driven molecular motions in Cu2+-complexes of a ditopic phenanthrolinophane ligand. Chemical Communications, 2003, , 3032-3033.	4.1	15
26	A tetraazahydroxypyridinone derivative as inhibitor of apple juice enzymatic browning and oxidation. LWT - Food Science and Technology, 2022, 154, 112778.	5.2	13
27	Synthesis and Cu(II) coordination of two new hexaamines containing alternated propylenic and ethylenic chains: Kinetic studies on pH-driven metal ion slippage movements. Inorganica Chimica Acta, 2006, 359, 2004-2014.	2.4	12
28	Extended structures of copper(II) complexes with 2-di1H-2-imidazolylmethylmalonate (DIMMAL), a versatile bis(imidazole)–bis(carboxylate) ligand: Solution studies, crystal structures and spectroscopic characterization. Polyhedron, 2008, 27, 633-640.	2.2	12
29	Cu ²⁺ Coordination Properties of a 2-Pyridine Heptaamine Tripod: Characterization and Binding Mechanism. Inorganic Chemistry, 2009, 48, 8985-8997.	4.0	12
30	Stabilization of polyiodide networks with Cu(<scp>ii</scp>) complexes of small methylated polyazacyclophanes: shifting directional control from H-bonds to lâ<ī interactions. Inorganic Chemistry Frontiers, 2020, 7, 4239-4255.	6.0	12
31	Fluorescent Chemosensors Based on Polyamine Ligands: A Review. Chemosensors, 2022, 10, 1.	3.6	12
32	Synthesis, Protonation and Cu ^{II} Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies. European Journal of Inorganic Chemistry, 2009, 2009, 62-75.	2.0	11
33	A Binuclear Mn ^{III} Complex of a Scorpiand-Like Ligand Displaying a Single Unsupported Mn ^{III} –O–Mn ^{III} Bridge. Inorganic Chemistry, 2012, 51, 11698-11706.	4.0	10
34	Oxidative stress protection by manganese complexes of tail-tied aza-scorpiand ligands. Journal of Inorganic Biochemistry, 2016, 163, 230-239.	3.5	10
35	Equilibrium, Kinetic, and Computational Studies on the Formation of Cu ²⁺ and Zn ²⁺ Complexes with an Indazole-Containing Azamacrocyclic Scorpiand: Evidence for Metal-Induced Tautomerism. Inorganic Chemistry, 2015, 54, 1983-1991.	4.0	9
36	A thermodynamic insight into the recognition of hydrophilic and hydrophobic amino acids in pure water by aza-scorpiand type receptors. Organic and Biomolecular Chemistry, 2015, 13, 843-850.	2.8	7

Begoña Verdejo

#	Article	IF	CITATIONS
37	Equilibrium and Kinetic Properties of Cu ^{II} Cyclophane Complexes: The Effect of Changes in the Macrocyclic Cavity Caused by Changes in the Substitution at the Aromatic Ring. European Journal of Inorganic Chemistry, 2008, 2008, 1497-1507.	2.0	6
38	Molecular Rearrangement of an Aza-Scorpiand Macrocycle Induced by pH: A Computational Study. International Journal of Molecular Sciences, 2016, 17, 1131.	4.1	6
39	Pb2+ complexes of small-cavity azamacrocyclic ligands: thermodynamic and kinetic studies. Dalton Transactions, 2017, 46, 6645-6653.	3.3	6
40	Hybrid GMP–polyamine hydrogels as new biocompatible materials for drug encapsulation. Soft Matter, 2020, 16, 6514-6522.	2.7	5
41	Influence of the chain length and metal :â€%ligand ratio on the self-organization processes of Cu2+ complexes of [1 + 1] 1H-pyrazole azamacrocycles. Dalton Transactions, 2020, 49, 8614-8624.	3.3	5
42	Heterocyclic Diamines with Leishmanicidal Activity. ACS Infectious Diseases, 2021, 7, 3168-3181.	3.8	5
43	Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems. Journal of Agricultural and Food Chemistry, 2020, 68, 7964-7973.	5.2	4
44	Synthesis, Characterization, and Cu2+ Coordination Studies of a 3-Hydroxy-4-pyridinone Aza Scorpiand Derivative. Inorganic Chemistry, 2016, 55, 7564-7575.	4.0	3
45	About the relevance of anion-ï€ interactions in water. Dalton Transactions, 2021, 50, 6834-6839.	3.3	3
46	A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride. Molecules, 2021, 26, 2352.	3.8	2
47	Ditopic Aza-Scorpiand Ligands Interact Selectively with ds-RNA and Modulate the Interaction upon Formation of Zn2+ Complexes. Molecules, 2021, 26, 3957.	3.8	1
48	Metal Complexes as Receptors. , 2017, , 437-477.		0
49	Molecular Rearrangement of an Aza-Scorpiand Macrocycle Induced by pH. A Computational Study. , 0, ,		0
50	Synthesis and Platinum (II) Complexes of Different Polyazacyclophane Receptors . , 0, , .		0