
Juan Francisco Lopez-Gimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8627508/publications.pdf

Version: 2024-02-01

Juan Francisco

#	Article	IF	CITATIONS
1	His452Tyr polymorphism in the human 5-HT2A receptor affects clozapine-induced signaling networks revealed by quantitative phosphoproteomics. Biochemical Pharmacology, 2021, 185, 114440.	2.0	5
2	Interclass GPCR heteromerization affects localization and trafficking. Science Signaling, 2020, 13, .	1.6	28
3	Evaluating the pharmacological response in fluorescence microscopy images: The Δm algorithm. PLoS ONE, 2019, 14, e0211330.	1.1	0
4	Validation of schizophrenia gene expression profile in a preclinical model of maternal infection during pregnancy. Schizophrenia Research, 2017, 189, 217-218.	1.1	1
5	M3 muscarinic acetylcholine receptor facilitates the endocytosis of mu opioid receptor mediated by morphine independently of the formation of heteromeric complexes. Cellular Signalling, 2017, 35, 208-222.	1.7	4
6	Potentiation of morphine-induced antinociception and locomotion by citalopram is accompanied by anxiolytic-like effects. Pharmacology Biochemistry and Behavior, 2017, 163, 83-89.	1.3	9
7	Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects. Nature Neuroscience, 2017, 20, 1247-1259.	7.1	79
8	Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways. Current Topics in Behavioral Neurosciences, 2017, 36, 45-73.	0.8	127
9	Allosteric signaling through an mClu2 and 5-HT _{2A} heteromeric receptor complex and its potential contribution to schizophrenia. Science Signaling, 2016, 9, ra5.	1.6	91
10	Endocytosis as a Biological Response in Receptor Pharmacology: Evaluation by Fluorescence Microscopy. PLoS ONE, 2015, 10, e0122604.	1.1	6
11	Multiple conformations of 5-HT2A and 5-HT2C receptors in rat brain: an autoradiographic study with [1251](±)DOI. Experimental Brain Research, 2013, 230, 395-406.	0.7	12
12	Identification of Three Residues Essential for 5-Hydroxytryptamine 2A-Metabotropic Glutamate 2 (5-HT2A·mGlu2) Receptor Heteromerization and Its Psychoactive Behavioral Function. Journal of Biological Chemistry, 2012, 287, 44301-44319.	1.6	122
13	Yohimbine does not affect opioid receptor activation but prevents adenylate cyclase regulation by morphine in NG108-15 cells. Life Sciences, 2011, 89, 327-30.	2.0	3
14	Opioid Regulation of Mu Receptor Internalisation: Relevance to the Development of Tolerance and Dependence. CNS and Neurological Disorders - Drug Targets, 2010, 9, 616-626.	0.8	11
15	Evidence for Distinct Antagonist-Revealed Functional States of 5-Hydroxytryptamine _{2A} Receptor Homodimers. Molecular Pharmacology, 2009, 75, 1380-1391.	1.0	60
16	Cell surface delivery and structural re-organization by pharmacological chaperones of an oligomerization-defective î±1b-adrenoceptor mutant demonstrates membrane targeting of GPCR oligomers. Biochemical Journal, 2009, 417, 161-172.	1.7	36
17	Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature, 2008, 452, 93-97.	13.7	739
18	Morphine Desensitization, Internalization, and Down-Regulation of the μ Opioid Receptor Is Facilitated by Serotonin 5-Hydroxytryptamine _{2A} Receptor Coactivation. Molecular Pharmacology, 2008, 74, 1278-1291.	1.0	47

JUAN FRANCISCO

#	Article	IF	CITATIONS
19	The α1b-Adrenoceptor Exists as a Higher-Order Oligomer: Effective Oligomerization Is Required for Receptor Maturation, Surface Delivery, and Function. Molecular Pharmacology, 2007, 71, 1015-1029.	1.0	154
20	Oligomeric structure of the α1b-adrenoceptor: Comparisons with rhodopsin. Vision Research, 2006, 46, 4434-4441.	0.7	9
21	Chemical Neuroanatomy of 5-HT Receptor Subtypes in the Mammalian Brain. Receptors, 2006, , 319-364.	0.2	16
22	Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience, 2006, 26, 2080-2087.	1.7	553
23	The Specificity and Molecular Basis of α ₁ -Adrenoceptor and CXCR Chemokine Receptor Dimerization. Journal of Molecular Neuroscience, 2005, 26, 161-168.	1.1	30
24	Domain Swapping in the Human Histamine H1 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 131-138.	1.3	77
25	Multiple Interactions between Transmembrane Helices Generate the Oligomeric α1b-Adrenoceptor. Molecular Pharmacology, 2004, 66, 1123-1137.	1.0	95
26	High-Affinity Interactions between Human α1A-Adrenoceptor C-Terminal Splice Variants Produce Homo- and Heterodimers but Do Not Generate the α1L-Adrenoceptor. Molecular Pharmacology, 2004, 66, 228-239.	1.0	65
27	Selectivity in the oligomerisation of G protein-coupled receptors. Seminars in Cell and Developmental Biology, 2004, 15, 263-268.	2.3	8
28	Dimerization of $\hat{1}\pm 1$ -adrenoceptors. Biochemical Society Transactions, 2004, 32, 847-850.	1.6	9
29	Constitutive oligomerization of human D2dopamine receptors expressed inSpodoptera frugiperda9 (Sf9) and in HEK293 cells. FEBS Journal, 2003, 270, 3928-3938.	0.2	23
30	Pharmacological analysis of a dopamine D2Short :Gαo fusion protein expressed in Sf9 cells. FEBS Letters, 2003, 545, 155-160.	1.3	19
31	Serotonin 2C receptor knockout mice: Autoradiographic analysis of multiple serotonin receptors. Journal of Neuroscience Research, 2002, 67, 69-85.	1.3	59
32	Formation of oligomers by G protein-coupled receptors. Current Opinion in Drug Discovery & Development, 2002, 5, 756-63.	1.9	9
33	Regional distribution and cellular localization of 5-HT2Creceptor mRNA in monkey brain: Comparison with [3H]mesulergine binding sites and choline acetyltransferase mRNA. Synapse, 2001, 42, 12-26.	0.6	87
34	Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. Journal of Comparative Neurology, 2001, 429, 571-589.	0.9	108
35	Human striosomes are enriched in 5-HT2Areceptors: autoradiographical visualization with [3H]MDL100,907, [125I](±)DOI and [3H]ketanserin. European Journal of Neuroscience, 1999, 11, 3761-3765.	1.2	32
36	Early localization of mRNA coding for 5-HT1A receptors in human brain during development. Molecular Brain Research, 1998, 60, 123-126.	2.5	49

#	Article	IF	CITATIONS
37	[3H]MDL100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology, 1998, 37, 1147-1158.	2.0	73
38	Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 446-454.	1.4	169