Tomaz Catunda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8626602/publications.pdf

Version: 2024-02-01

147801 223800 2,966 147 31 46 citations h-index g-index papers 149 149 149 1359 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review. Journal of Non-Crystalline Solids, 2006, 352, 3582-3597.	3.1	141
2	Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review. Journal of Non-Crystalline Solids, 2000, 273, 215-227.	3.1	129
3	Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids. Physical Review B, 1998, 57, 10545-10549.	3.2	116
4	Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses. Physical Review B, 1996, 53, 6065-6070.	3.2	91
5	Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses. Journal of Luminescence, 2015, 165, 77-84.	3.1	82
6	Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry. Physical Review B, 1999, 60, 15173-15178.	3.2	80
7	Nd2O3 doped low silica calcium aluminosilicate glasses: Thermomechanical properties. Journal of Applied Physics, 1999, 85, 8112-8118.	2.5	73
8	Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: Application toNd3+-doped glasses. Physical Review B, 2006, 73, .	3.2	70
9	Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1408.	2.1	69
10	Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K. Physical Review B, 2005, 71 , .	3.2	56
11	Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: Application to Nd3+-doped fluoride glass. Applied Physics Letters, 2001, 78, 3220-3222.	3.3	54
12	Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses. Journal of Applied Physics, 2015, 117, .	2.5	46
13	Saturation Effects in Z-Scan Measurements. Japanese Journal of Applied Physics, 1996, 35, 2649-2652.	1.5	45
14	Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF_5:Cr^+3. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 395.	2.1	45
15	Differential interferometric technique for the measurement of the nonlinear index of refraction of ruby and GdAlO_3:Cr^+3. Applied Optics, 1986, 25, 2391.	2.1	44
16	Thermal lens determination of the temperature coefficient of optical path length in optical materials. Review of Scientific Instruments, 2003, 74, 877-880.	1.3	44
17	Thermal relaxation method to determine the specific heat of optical glasses. Journal of Non-Crystalline Solids, 2002, 304, 299-305.	3.1	43
18	Thermal lens spectroscopy of Nd:YAG. Applied Physics Letters, 2005, 86, 034104.	3.3	43

#	Article	IF	Citations
19	Ultrasensitive thermal lens spectroscopy of water. Optics Letters, 2009, 34, 1882.	3.3	41
20	Continuous-wave diode-pumped Yb:glass laser with near 90% slope efficiency. Applied Physics Letters, 2006, 89, 121101.	3.3	39
21	Neodymium concentration dependence of thermoâ€"optical properties in low silica calcium aluminate glasses. Journal of Non-Crystalline Solids, 1997, 219, 165-169.	3.1	38
22	Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses. Journal of Non-Crystalline Solids, 2001, 284, 274-281.	3.1	38
23	Thermal lens study of the OH[sup â^'] influence on the fluorescence efficiency of Yb[sup 3+]-doped phosphate glasses. Applied Physics Letters, 2005, 86, 071911.	3.3	38
24	Transverse self-phase modulation in ruby and GdAlO_3:Cr^+3 crystals. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 1445.	2.1	37
25	Measurement of saturation intensities in ion doped solids by transient nonlinear refraction. Applied Physics Letters, 1997, 70, 817-819.	3.3	37
26	Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials. Optics Express, 2005, 13, 2040.	3.4	37
27	Quantum yield excitation spectrum (UV-visible) of CdSe/ZnS core-shell quantum dots by thermal lens spectrometry. Journal of Applied Physics, 2010, 107, 083504.	2.5	37
28	Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystalNdAl3(BO3)4. Physical Review B, 2005, 72, .	3.2	36
29	Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry. Journal of Non-Crystalline Solids, 2005, 351, 1594-1602.	3.1	36
30	Time-resolved Z-scan and thermal lens measurements in Er+3 and Nd+3 doped fluoroindate glasses. Journal of Non-Crystalline Solids, 1997, 213-214, 225-230.	3.1	34
31	Structure and properties of water free Nd2O3 doped low silica calcium aluminate glasses. Journal of Non-Crystalline Solids, 1999, 247, 196-202.	3.1	31
32	Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method. Optics Letters, 2003, 28, 239.	3.3	30
33	Thermal and Optical Properties of \${hbox {Yb}}^{3+}\$- and \${hbox {Nd}}^{3+}\$-Doped Phosphate Glasses Determined by Thermal Lens Technique. IEEE Journal of Quantum Electronics, 2007, 43, 751-757.	1.9	28
34	Thermal and optical properties of chalcohalide glass. Journal of Non-Crystalline Solids, 2001, 284, 203-209.	3.1	27
35	Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 \hat{l} 4m. Optics Express, 2008, 16, 6317.	3.4	27
36	Thermo-optical spectroscopic investigation of new Nd3+-doped fluoro-aluminophosphate glasses. Journal of Alloys and Compounds, 2018, 732, 887-893.	5.5	27

#	Article	IF	CITATIONS
37	High fluorescence quantum efficiency of 1.8â€,μm emission in Tm-doped low silica calcium aluminate glass determined by thermal lens spectrometry. Applied Physics Letters, 2004, 84, 359-361.	3.3	26
38	Spectroscopic investigations of 1.06 ${\rm \hat{A}\mu m}$ emission and time resolved Z-scan studies in Nd3+-doped zinc tellurite based glasses. Journal of Luminescence, 2017, 192, 1047-1055.	3.1	26
39	Microstructuration induced differences in the thermo-optical and luminescence properties of Nd:YAG fine grain ceramics and crystals. Journal of Chemical Physics, 2008, 129, 104705.	3.0	25
40	Thermal–optical properties of Ga:La:S glasses measured by thermal lens technique. Journal of Non-Crystalline Solids, 1999, 247, 222-226.	3.1	24
41	Thermal lens study of energy transfer in Yb^3+/Tm^3+-co-doped glasses. Optics Express, 2007, 15, 9232.	3.4	24
42	Phase conjugation in GdAlO3:Cr+3 and ruby. Optics Communications, 1987, 63, 185-190.	2.1	23
43	Energy transfer processes and heat generation in Yb[sup 3+]-doped phosphate glasses. Journal of Applied Physics, 2006, 100, 113103.	2.5	23
44	Discrimination of Resonant and Nonresonant Contributions to the Nonlinear Refraction Spectroscopy of Ion-Doped Solids. Physical Review Letters, 2007, 99, 243902.	7.8	23
45	Effect of Nd3+ concentration quenching in highly doped lead lanthanum zirconate titanate transparent ferroelectric ceramics. Journal of Applied Physics, 2007, 101, 053111.	2.5	23
46	Electronic and thermal contributions to the non-linear refractive index of Nd3+ ion-doped fluoride glasses. Journal of Non-Crystalline Solids, 2000, 273, 257-265.	3.1	22
47	Thermal lens measurements of fluorescence quantum efficiency in Nd3+-doped fluoride glasses. Journal of Non-Crystalline Solids, 2001, 284, 255-260.	3.1	22
48	Thermal lensing in poly(vinyl alcohol)/polyaniline blends. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1949-1956.	2.1	21
49	Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spectrometry. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1784.	2.1	21
50	Nonlinear electronic line shape determination in Yb^3+-doped phosphate glass. Optics Letters, 2007, 32, 665.	3.3	21
51	Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd^3+-doped laser materials. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1002.	2.1	21
52	Time-resolved thermal lens measurements of thermo-optical properties of fluoride glasses. Journal of Non-Crystalline Solids, 1999, 256-257, 337-342.	3.1	20
53	Thermal lens spectrometry in pyroelectric lithium niobate crystals. Applied Physics B: Lasers and Optics, 2008, 93, 879-883.	2.2	20
54	Thermo-optical properties of Nd3+ doped phosphate glass determined by thermal lens and lifetime measurements. Journal of Luminescence, 2015, 162, 104-107.	3.1	20

#	Article	IF	Citations
55	Monitoring of the ester production by near-near infrared thermal lens spectroscopy. Fuel, 2019, 253, 1090-1096.	6.4	20
56	Discriminating the role of sample length in thermal lensing of solids. Optics Letters, 2014, 39, 4013.	3.3	19
57	Determination of the biodiesel content in diesel/biodiesel blends by using the near-near-infrared thermal lens spectroscopy. Fuel, 2018, 212, 309-314.	6.4	19
58	Saturation effects in degenerate four-wave mixing in ruby and GdAIO_3:Cr^+3. Journal of the Optical Society of America B: Optical Physics, 1991, 8, 820.	2.1	18
59	Thermo-mechanical and optical properties of calcium aluminosilicate glasses doped with Er3+ and Yb3+. Journal of Non-Crystalline Solids, 2000, 273, 239-245.	3.1	17
60	Thermal lens versus DTA measurements for glass transition analysis of fluoride glasses. Journal of Non-Crystalline Solids, 2002, 304, 315-321.	3.1	17
61	Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1055.	2.1	17
62	The effect of silica content on the luminescence properties of Tb3+-doped calcium aluminosilicate glasses. Journal of Luminescence, 2018, 202, 363-369.	3.1	16
63	Time-resolved study of thermal and electronic nonlinearities in Nd+3 doped fluoride glasses. Electronics Letters, 1998, 34, 117.	1.0	16
64	Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry. Journal of Non-Crystalline Solids, 2002, 304, 244-250.	3.1	15
65	Fluorescence quantum efficiency measurements using the thermal lens technique. Review of Scientific Instruments, 2003, 74, 857-859.	1.3	15
66	Thermal-lens study of thermo-optical properties of tellurite glasses. Journal of Materials Science, 2007, 42, 2304-2308.	3.7	15
67	Absolute photoluminescence quantum efficiency of P3HT/CHCl3 solution by Thermal Lens Spectrometry. Synthetic Metals, 2013, 163, 38-41.	3.9	15
68	Nonlinear refraction spectroscopy in resonance with laser lines in solids. Optics Letters, 2002, 27, 845.	3.3	14
69	Thermal lens spectroscopy through phase transition in neodymium doped strontium barium niobate laser crystals. Journal of Applied Physics, 2007, 101, 023113.	2.5	14
70	Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses. Applied Physics Letters, 2002, 81, 589-591.	3.3	13
71	Thermo-optical properties and nonradiative quantum efficiency of Er3+-doped and Er3+/Tm3+-co-doped tellurite glasses. Journal of Non-Crystalline Solids, 2006, 352, 3598-3602.	3.1	13
72	Very low optical absorptions and analyte concentrations in water measured by Optimized Thermal Lens Spectrometry. Talanta, 2011, 85, 850-858.	5.5	13

#	Article	IF	Citations
73	Resonant excited state absorption and relaxation mechanisms in Tb^3+-doped calcium aluminosilicate glasses: an investigation by thermal mirror spectroscopy. Optics Letters, 2013, 38, 4667.	3.3	13
74	Thermo-optical properties of OH-free erbium-doped low silica calcium aluminosilicate glasses measured by thermal lens technique. Journal of Non-Crystalline Solids, 2001, 284, 210-216.	3.1	12
75	Time-resolved thermal lens determination of the thermo-optical coefficients in Nd-doped yttrium aluminum garnet as a function of temperature. Applied Physics Letters, 2004, 84, 5183-5185.	3.3	12
76	Thermal lens and Auger upconversion losses' effect on the efficiency of Nd^3+-doped lead lanthanum zirconate titanate transparent ceramics. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 2097.	2.1	12
77	Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals. Journal of Luminescence, 2008, 128, 1013-1015.	3.1	12
78	Time resolved thermal lens measurements of the thermo-optical properties of Nd2O3-doped low silica calcium aluminosilicate glasses down to 4.3K. Journal of Non-Crystalline Solids, 2008, 354, 574-579.	3.1	12
79	Upconversion in Nd3+-doped glasses: Microscopic theory and spectroscopic measurements. Journal of Applied Physics, 2008, 103, 023103.	2.5	12
80	Auger upconversion energy transfer losses and efficient $1.06 {\rm \hat{A}} \hat{l}^1\!/4$ m laser emission in Nd3+ doped fluoroindogallate glass. Applied Physics B: Lasers and Optics, 2006, 83, 565-569.	2.2	11
81	Thermo-optical parameters of tellurite glasses doped with Yb3+. Journal Physics D: Applied Physics, 2007, 40, 4073-4077.	2.8	11
82	Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal. Physical Review B, 2009, 79, .	3.2	11
83	Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers. Optics Communications, 2011, 284, 1975-1981.	2.1	11
84	Spatial and temporal observation of energy transfer processes in Pr-doped phosphate glasses. Optical Materials, 2014, 37, 387-390.	3.6	11
85	Single-beam time-resolved cw thermal Z-scan analysis applied in solids. Optics and Laser Technology, 2021, 142, 107248.	4.6	11
86	Photothermal and spectroscopic characterization of Tb3+-doped tungsten–zirconium–tellurite glasses. Journal of Applied Physics, 2020, 128, .	2.5	10
87	Evaluating the link between blue-green luminescence and cross-relaxation processes in Tb3+-doped glasses. Journal of Luminescence, 2021, 240, 118430.	3.1	10
88	Promising Tb3+-doped gallium tungsten-phosphate glass scintillator: Spectroscopy, energy transfer and UV/X-ray sensing. Journal of Alloys and Compounds, 2022, 904, 164016.	5.5	10
89	Plane wave interference: A didactic experiment to measure the wavelength of light. American Journal of Physics, 1998, 66, 548-549.	0.7	9
90	Temperature dependence of the Cr3+site axial distortion in LiSrAlF6and LiSrGaF6single crystals. Journal of Physics Condensed Matter, 2001, 13, 8435-8443.	1.8	9

#	Article	IF	Citations
91	Thermal properties of barium titanium borate glasses measured by thermal lens technique. Journal of Non-Crystalline Solids, 2006, 352, 3577-3581.	3.1	9
92	Thermal lens study of PbO–Bi2O3–Ga2O3–BaO glasses doped with Yb3+. Journal of Non-Crystalline Solids, 2006, 352, 3647-3652.	3.1	9
93	Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique. Optical Materials, 2013, 35, 1724-1727.	3.6	9
94	Spectroscopic investigation and heat generation of Yb^3+/Ho^3+ codoped aluminosilicate glasses looking for the emission at $2\hat{A}\hat{I}^{1}_{4}$ m. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1322.	2.1	9
95	Thermal-lens study of thermo-optical and spectroscopic properties of polyaniline. Review of Scientific Instruments, 2003, 74, 866-868.	1.3	8
96	Towards Power Scaling of Simple CW Ultraviolet via Pr: LiYF ₄ -LBO Laser at 320 nm. IEEE Photonics Technology Letters, 2022, 34, 129-132.	2.5	8
97	Angular dependence of the thermal-lens effect on LiSrAlF_6 and LiSrGaF_6 single crystals. Optics Letters, 2008, 33, 1720.	3.3	7
98	Thermal lens and interferometric method for glass transition and thermo physical properties measurements in Nd_2O_3 doped sodium zincborate glass. Optics Express, 2008, 16, 21248.	3.4	7
99	Thermo-optical and spectroscopic properties of Nd:YAG fine grain ceramics: towards a better performance than the Nd:YAG laser crystals. Laser Physics Letters, 2016, 13, 025004.	1.4	7
100	Pump-induced refractive index changes in Tb3+ doped glasses. Journal of Luminescence, 2016, 169, 659-664.	3.1	7
101	Determination of fluorescence quantum efficiency in solutions by thermal lens measurements at several wavelengths: Application to Rhodamine 6G. European Physical Journal Special Topics, 2005, 125, 225-227.	0.2	6
102	Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique. Optics Communications, 2007, 271, 184-189.	2.1	6
103	Influence of temperature and excitation procedure on the athermal behavior of Nd3+-doped phosphate glass: Thermal lens, interferometric, and calorimetric measurements. Journal of Applied Physics, 2009, 106, .	2.5	6
104	Thermal conductivity of Nd3+ and Yb3+ doped laser materials measured by using the thermal lens technique. Optical Materials, 2014, 37, 211-213.	3.6	6
105	Photoacoustic and photothermal and the photovoltaic efficiency of solar cells: A tutorial. Journal of Applied Physics, 2022, 131, .	2.5	6
106	Spectroscopic and thermal characterization in poly(p-phenylene vinylene)/sol–gel silica sample. Optical Materials, 2003, 24, 483-489.	3.6	5
107	Thermal lens and non-linear optical absorption study of a-SiH films. Journal of Non-Crystalline Solids, 2004, 348, 230-234.	3.1	5
108	Evaluation of thermo-optical properties of poly(2-methoxyaniline) solutions. Chemical Physics Letters, 2007, 442, 400-404.	2.6	5

#	Article	IF	CITATIONS
109	Nd:YAG optical electronic nonlinearity and energy transfer upconversion studied by the Z-scan technique. Optical Materials Express, 2015, 5, 2588.	3.0	5
110	Quantum yield measurements by thermal lens in highly absorbing samples: The case of highly doped rhodamine B organic/silica xerogels. Physical Review Materials, 2019, 3, .	2.4	5
111	Interference effects in the degenerate-wave-mixing spectroscopy of alexandrite. Physical Review B, 1992, 45, 10087-10090.	3.2	4
112	Transient four-wave mixing in saturable media with a nonlinear refractive index. Optics Communications, 1999, 163, 44-48.	2.1	4
113	Thermal lens temperature scanning for quantitative measurements in transparent materials (invited). Review of Scientific Instruments, 2003, 74, 291-296.	1.3	4
114	High-sensitivity absorption coefficients measurements using thermal lens spectrometry. European Physical Journal Special Topics, 2005, 125, 229-232.	0.2	4
115	The internal resistance of supercapacitors. Physics Education, 2012, 47, 439-443.	0.5	4
116	Electronic refractive index changes and measurement of saturation intensity in Cr3+-doped YAG crystal. Optical Materials, 2018, 78, 107-112.	3.6	4
117	Theoretical study of high order and saturable Kerr media nonlinearities in Z-scan. Optics Communications, 2021, 479, 126421.	2.1	4
118	Identification of overtone and combination bands of organic solvents by thermal lens spectroscopy with tunable Ti:sapphire laser excitation. Journal of Molecular Liquids, 2021, 328, 115414.	4.9	4
119	Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique. Applied Physics B: Lasers and Optics, 2012, 107, 733-740.	2.2	3
120	Fluorescence quantum efficiency in Nd ₂ O ₃ -doped aluminosilicate glasses by multiwavelength thermal lens method. European Physical Journal Special Topics, 2005, 125, 185-187.	0.2	3
121	Title is missing!. Journal of Materials Science Letters, 2001, 20, 1815-1817.	0.5	2
122	<title>Refractive index changes in solid-state laser materials</title> ., 2006, , .		2
123	Modeling population and thermal lenses in the presence of Auger Upconversion for Nd^3+ doped materials. Optics Express, 2015, 23, 15983.	3.4	2
124	Thermal lens determination of fluorescence quantum efficiency of sup>3 / sup>F < sub>4 / sub>level of Tm < sup>3 + / sup>ions in solids. European Physical Journal Special Topics, 2005, 125, 193-196.	0.2	2
125	Differential absorption saturation in laser cooled Yb:LiYF4. Optical Materials, 2022, 128, 112404.	3.6	2
126	<title>Applications of Fresnel-Kirchhoff diffraction integral in linear and nonlinear optics: a didactic introduction</title> ., 2001, 4419, 728.		1

#	Article	IF	CITATIONS
127	<title>Nonlinear refraction spectroscopy in resonance with laser lines in solids</title> ., 2001, 4419, 146.		1
128	Photothermal spectroscopic characterization in tellurite glasses codoped with rare-earth ions. , 2006, 6116, 169.		1
129	Spectroscopic investigation and heat generation of Tm ³⁺ /Ho ³⁺ -codoped aluminosilicate glasses emitting at 2.0 µm. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3222.	2.1	1
130	Using a PC as a frequency meter or a counter. American Journal of Physics, 1995, 63, 1152-1153.	0.7	0
131	<title>Thermal-lens measurements of thermal diffusivity temperature dependence up to the glass transition in a fluoride glass</title> ., 1999,,.		O
132	<title>Thermal-lens measurements of fluorescence quantum efficiency in Nd+3-doped fluoride glasses</title> ., 1999,,.		0
133	<title>Z-scan measurements in saturable nonlinear refraction media</title> ., 1999, 3749, 605.		0
134	Determination of Auger upconversion coefficient in Nd3+doped solids by thermal lens technique., 2003, 4829, 825.		0
135	Study of temperature dependence of the optical path length in ion doped solids. , 2003, 4829, 539.		0
136	Determination fluorescence quantum efficiency of Nd3+doped glasses and crystal by thermal lens technique in function of the wavelength. , 2003, 4829, 823.		0
137	<title>Light-induced photorefractive and thermal lens effect in lithium niobate crystals</title> ., 2004,,.		0
138	Influence of probe beam multi-reflection on thermal lens measurements: Application to Nd:YAG rods. European Physical Journal Special Topics, 2005, 125, 189-191.	0.2	0
139	HIGH—SENSITIVITY THERMAL LENS OPTIMIZED TECHNIQUE TO MEASURE LOW LINEAR ABSORPTION COEFFICIENTS. AIP Conference Proceedings, 2008, , .	0.4	0
140	Photothermal Spectroscopic Characterization in Core-Shell Quantum Dots Nanoparticles. AIP Conference Proceedings, 2008, , .	0.4	0
141	ESA spectra and polarizability changes in Cr ³⁺ doped laser materials., 2009,,.		0
142	Ultra-sensitive thermal lens spectroscopy of water. , 2009, , .		0
143	Spectroscopic study of ds/dT in commercial filter by using the thermal lens technique. European Physical Journal Special Topics, 2005, 125, 221-223.	0.2	0
144	Spectroscopic properties and heat generation of Yb3+/Ho3+ and Tm3+/Ho3+ co-doped low silica calcium aluminosilicate glasses for emission around 2 $\hat{A}\mu m$., 2012, , .		0

Tomaz Catunda

#	Article	IF	CITATIONS
145	Study of energy transfer upconvertion process on phosphate glass through z-scan technique. , 2013, , .		O
146	Luminescence-Z-scan., 2015,,.		0
147	High-order nonlinearities in Tb3+ doped calcium aluminosilicate glasses. , 2015, , .		O