
Ryuichiro Nakato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8626529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly rigid H3.1/H3.2–H3K9me3 domains set a barrier for cell fate reprogramming in trophoblast stem cells. Genes and Development, 2022, 36, 84-102.	2.7	10
2	PHOSPHATE exporter XPR1/SLC53A1 is required for the tumorigenicity of epithelial ovarian cancer. Cancer Science, 2022, 113, 2034-2043.	1.7	7
3	CRISPR/Cas9 Screening for Identification of Genes Required for the Growth of Ovarian Clear Cell Carcinoma Cells. Current Issues in Molecular Biology, 2022, 44, 1587-1596.	1.0	0
4	Cohesin-dependent chromosome loop extrusion is limited by transcription and stalled replication forks. Science Advances, 2022, 8, .	4.7	28
5	Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation. Nature Communications, 2022, 13, .	5.8	7
6	Methods for ChIP-seq analysis: A practical workflow and advanced applications. Methods, 2021, 187, 44-53.	1.9	114
7	Codependency and mutual exclusivity for gene community detection from sparse single-cell transcriptome data. Nucleic Acids Research, 2021, 49, e104-e104.	6.5	3
8	OUP accepted manuscript. Briefings in Bioinformatics, 2021, , .	3.2	8
9	The splicing factor DHX38/PRP16 is required for ovarian clear cell carcinoma tumorigenesis, as revealed by a CRISPRâ€Cas9 screen. FEBS Open Bio, 2021, , .	1.0	3
10	PHi-C: deciphering Hi-C data into polymer dynamics. NAR Genomics and Bioinformatics, 2020, 2, Iqaa020.	1.5	33
11	Toward understanding the dynamic state of 3D genome. Computational and Structural Biotechnology Journal, 2020, 18, 2259-2269.	1.9	6
12	Paternal restraint stress affects offspring metabolism via ATF-2 dependent mechanisms in Drosophila melanogaster germ cells. Communications Biology, 2020, 3, 208.	2.0	16
13	Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity. Nature Immunology, 2020, 21, 950-961.	7.0	55
14	Missense Mutations in NKAP Cause a Disorder of Transcriptional Regulation Characterized by Marfanoid Habitus and Cognitive Impairment. American Journal of Human Genetics, 2019, 105, 987-995.	2.6	11
15	Cux2 refines the forelimb field by controlling expression of <i>Raldh2</i> and <i>Hox</i> genes. Biology Open, 2019, 8, .	0.6	6
16	The novel lnc <scp>RNA</scp> <i> <scp>CALIC</scp> </i> upregulates <scp>AXL</scp> to promote colon cancer metastasis. EMBO Reports, 2019, 20, e47052.	2.0	29
17	Comprehensive epigenome characterization reveals diverse transcriptional regulation across human vascular endothelial cells. Epigenetics and Chromatin, 2019, 12, 77.	1.8	34
18	Combined Loss of JMJD1A and JMJD1B Reveals Critical Roles for H3K9 Demethylation in the Maintenance of Embryonic Stem Cells and Early Embryogenesis. Stem Cell Reports, 2018, 10, 1340-1354.	2.3	23

Ryuichiro Nakato

#	Article	IF	CITATIONS
19	Sensitive and robust assessment of ChIP-seq read distribution using a strand-shift profile. Bioinformatics, 2018, 34, 2356-2363.	1.8	21
20	Statistical Analysis and Quality Assessment of ChIP-seq Data with DROMPA. Methods in Molecular Biology, 2018, 1672, 631-643.	0.4	5
21	Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. Briefings in Bioinformatics, 2017, 18, bbw023.	3.2	107
22	Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior. Journal of Experimental Medicine, 2017, 214, 1431-1452.	4.2	44
23	Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase. Journal of Neuroscience, 2017, 37, 5496-5510.	1.7	8
24	The HSF1–PARP13–PARP1 complex facilitates DNA repair and promotes mammary tumorigenesis. Nature Communications, 2017, 8, 1638.	5.8	57
25	MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7671-7676.	3.3	45
26	Genome-Wide Target Analyses of Otx2 Homeoprotein in Postnatal Cortex. Frontiers in Neuroscience, 2017, 11, 307.	1.4	25
27	Assembly of Slx4 signaling complexes behind <scp>DNA</scp> replication forks. EMBO Journal, 2015, 34, 2182-2197.	3.5	40
28	Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Cell Reports, 2015, 12, 774-787.	2.9	100
29	Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nature Communications, 2015, 6, 7815.	5.8	100
30	Esco1 Acetylates Cohesin via a Mechanism Different from That of Esco2. Current Biology, 2015, 25, 1694-1706.	1.8	74
31	Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nature Genetics, 2015, 47, 338-344.	9.4	109
32	The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. Journal of Biological Chemistry, 2015, 290, 21713-21723.	1.6	50
33	ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex. Molecular and Cellular Biology, 2015, 35, 11-25.	1.1	50
34	A Cohesin-Independent Role for NIPBL at Promoters Provides Insights in CdLS. PLoS Genetics, 2014, 10, e1004153.	1.5	123
35	The Chromosomal Association of the Smc5/6 Complex Depends on Cohesion and Predicts the Level of Sister Chromatid Entanglement. PLoS Genetics, 2014, 10, e1004680.	1.5	60
36	Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Molecular Biology of the Cell, 2014, 25, 302-317.	0.9	61

Ryuichiro Nakato

#	Article	IF	CITATIONS
37	The dynamics of genome replication using deep sequencing. Nucleic Acids Research, 2014, 42, e3-e3.	6.5	113
38	Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis. Development (Cambridge), 2014, 141, 2885-2894.	1.2	27
39	BRCA2 Coordinates the Activities of Cell-Cycle Kinases to Promote Genome Stability. Cell Reports, 2014, 7, 1547-1559.	2.9	49
40	Histone Variants Enriched in Oocytes Enhance Reprogramming to Induced Pluripotent Stem Cells. Cell Stem Cell, 2014, 14, 217-227.	5.2	130
41	Chromatin Immunoprecipitation Protocol for Mammalian Cells. Methods in Molecular Biology, 2014, 1164, 33-38.	0.4	16
42	Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nature Genetics, 2013, 45, 1232-1237.	9.4	334
43	Eukaryotic Replisome Components Cooperate to Process Histones During Chromosome Replication. Cell Reports, 2013, 3, 892-904.	2.9	157
44	PRDM14 Ensures Naive Pluripotency through Dual Regulation of Signaling and Epigenetic Pathways in Mouse Embryonic Stem Cells. Cell Stem Cell, 2013, 12, 368-382.	5.2	266
45	<scp>DROMPA</scp> : easyâ€toâ€handle peak calling and visualization software for the computational analysis and validation of ChIPâ€seq data. Genes To Cells, 2013, 18, 589-601.	0.5	67
46	Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes and Development, 2012, 26, 2050-2062.	2.7	68
47	HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature, 2012, 489, 313-317.	13.7	488
48	Replisome Stability at Defective DNA Replication Forks Is Independent of S Phase Checkpoint Kinases. Molecular Cell, 2012, 45, 696-704.	4.5	140
49	The Inheritance of Histone Modifications Depends upon the Location in the Chromosome in Saccharomyces cerevisiae. PLoS ONE, 2011, 6, e28980.	1.1	2
50	Origin Association of Sld3, Sld7, and Cdc45 Proteins Is a Key Step for Determination of Origin-Firing Timing. Current Biology, 2011, 21, 2055-2063.	1.8	232
51	Cgaln: fast and space-efficient whole-genome alignment. BMC Bioinformatics, 2010, 11, 224.	1.2	14
52	Methods and application of genomic sequence alignment and alignment between genomic sequence and transcripts. Journal of Animal Genetics, 2008, 36, 177-183.	0.1	0
53	A NOVEL METHOD FOR REDUCING COMPUTATIONAL COMPLEXITY OF WHOLE GENOME SEQUENCE ALIGNMENT. , 2007, , .		1