Doris Vandeputte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8626517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464, 59-65.	13.7	9,342
2	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	13.7	5,800
3	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	13.7	3,641
4	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	6.0	1,716
5	Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528, 262-266.	13.7	1,627
6	Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352, 565-569.	6.0	1,398
7	The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 2019, 4, 623-632.	5.9	1,206
8	Determinants of community structure in the global plankton interactome. Science, 2015, 348, 1262073.	6.0	842
9	Quantitative microbiome profiling links gut community variation to microbial load. Nature, 2017, 551, 507-511.	13.7	791
10	Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut, 2016, 65, 57-62.	6.1	737
11	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	5.9	717
12	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	9.4	676
13	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 2016, 10, 1669-1681.	4.4	593
14	The Human Gut Microbiome: From Association to Modulation. Cell, 2018, 172, 1198-1215.	13.5	558
15	CoNet app: inference of biological association networks using Cytoscape. F1000Research, 2016, 5, 1519.	0.8	398
16	Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut, 2017, 66, 1968-1974.	6.1	370
17	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	13.7	283
18	Species–function relationships shape ecological properties of the human gut microbiome. Nature Microbiology, 2016, 1, 16088.	5.9	279

DORIS VANDEPUTTE

#	Article	IF	CITATIONS
19	LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome, 2014, 2, 30.	4.9	233
20	Brief Report: <i>Dialister</i> as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis and Rheumatology, 2017, 69, 114-121.	2.9	233
21	Metabolic Functions of Gut Microbes Associate With Efficacy ofÂTumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases. Gastroenterology, 2019, 157, 1279-1292.e11.	0.6	180
22	Get the most out of your metagenome: computational analysis of environmental sequence data. Current Opinion in Microbiology, 2007, 10, 490-498.	2.3	169
23	Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nature Microbiology, 2019, 4, 1826-1831.	5.9	149
24	Population-level analysis of <i>Blastocystis</i> subtype prevalence and variation in the human gut microbiota. Gut, 2019, 68, 1180-1189.	6.1	149
25	Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nature Microbiology, 2020, 5, 1079-1087.	5.9	144
26	Practical considerations for large-scale gut microbiome studies. FEMS Microbiology Reviews, 2017, 41, S154-S167.	3.9	142
27	Microbiology Meets Big Data: The Case of Gut Microbiota–Derived Trimethylamine. Annual Review of Microbiology, 2015, 69, 305-321.	2.9	133
28	Multi-stability and the origin of microbial community types. ISME Journal, 2017, 11, 2159-2166.	4.4	104
29	Temporal variability in quantitative human gut microbiome profiles and implications for clinical research. Nature Communications, 2021, 12, 6740.	5.8	89
30	Richness and ecosystem development across faecal snapshots of the gut microbiota. Nature Microbiology, 2018, 3, 526-528.	5.9	81
31	Towards biome-specific analysis of meta-omics data. ISME Journal, 2016, 10, 1025-1028.	4.4	72
32	Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biology and Biochemistry, 2017, 105, 227-235.	4.2	72
33	Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Annals of Clinical and Translational Neurology, 2020, 7, 406-419.	1.7	59
34	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	6.1	58
35	Assessment of faecal microbial transfer in irritable bowel syndrome with severe bloating. Gut, 2017, 66, 980-982.	6.1	56
36	Prebiotic Wheat Bran Fractions Induce Specific Microbiota Changes. Frontiers in Microbiology, 2018, 9, 31.	1.5	45

DORIS VANDEPUTTE

#	Article	IF	CITATIONS
37	Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms, 2020, 8, 1638.	1.6	41
38	Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines. Journal of Crohn's and Colitis, 2016, 10, 735-746.	0.6	37
39	The human microbiome in health and disease: hype or hope. Acta Clinica Belgica, 2019, 74, 53-64.	0.5	34
40	Variation and transmission of the human gut microbiota across multiple familial generations. Nature Microbiology, 2022, 7, 87-96.	5.9	32
41	Personalized Nutrition Through The Gut Microbiota: Current Insights And Future Perspectives. Nutrition Reviews, 2020, 78, 66-74.	2.6	20
42	GWAS of stool frequency provides insights into gastrointestinal motility and irritable bowel syndrome. Cell Genomics, 2021, 1, 100069.	3.0	15
43	Tracking humans and microbes. Nature, 2019, 569, 632-633.	13.7	14
44	Comparisons of gut microbiota profiles in wild-type and gelatinase B/matrix metalloproteinase-9-deficient mice in acute DSS-induced colitis. Npj Biofilms and Microbiomes, 2018, 4, 18.	2.9	10
45	Water activity does not shape the microbiota in the human colon. Gut, 2017, 66, 1865-1866.	6.1	9
46	Null-model-based network comparison reveals core associations. ISME Communications, 2021, 1, .	1.7	9
47	Effect of cryopreservation medium conditions on growth and isolation of gut anaerobes from human faecal samples. Microbiome, 2022, 10, .	4.9	6
48	Matrix Metalloproteinase/MMP-9 Gene Knockout does not Influence Changes in Gut Microbiota in a Model of Acute Dextran Sodium Sulphate/DSS-Induced Colitis. Gastroenterology, 2017, 152, S623.	0.6	1
49	Practical guidelines for gut microbiome analysis in microbiota-gut-brain axis research. Behavioral and Brain Sciences, 2019, 42, .	0.4	1