Yongjian Ai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8626150/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Recent Advances in Nanozymes: From Matters to Bioapplications. Advanced Functional Materials, 2022, 32, .	7.8	143
2	Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA. ACS Applied Materials & Interfaces, 2020, 12, 5500-5510.	4.0	130
3	Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues. Small, 2020, 16, e1902838.	5.2	109
4	Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. Small, 2020, 16, e1903940.	5.2	101
5	Stretchable Multiresponsive Hydrogel with Actuatable, Shape Memory, and Selfâ€Healing Properties. Advanced Science, 2018, 5, 1800450.	5.6	98
6	Porous silica-encapsulated and magnetically recoverable Rh NPs: a highly efficient, stable and green catalyst for catalytic transfer hydrogenation with "slow-release―of stoichiometric hydrazine in water. Green Chemistry, 2017, 19, 3400-3407.	4.6	78
7	Bismuth iron oxide nanocomposite supported on graphene oxides as the high efficient, stable and reusable catalysts for the reduction of nitroarenes under continuous flow conditions. Chemical Engineering Journal, 2017, 314, 328-335.	6.6	52
8	Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC - Trends in Analytical Chemistry, 2019, 117, 215-230.	5.8	49
9	Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Research, 2018, 11, 287-299.	5.8	48
10	Magnetically Hollow Pt Nanocages with Ultrathin Walls as a Highly Integrated Nanoreactor for Catalytic Transfer Hydrogenation Reaction. Advanced Science, 2019, 6, 1802132.	5.6	47
11	Amorphous Flowerlike Goethite FeOOH Hierarchical Supraparticles: Superior Capability for Catalytic Hydrogenation of Nitroaromatics in Water. ACS Applied Materials & Interfaces, 2018, 10, 32180-32191.	4.0	44
12	Pd-CuFe Catalyst for Transfer Hydrogenation of Nitriles: Controllable Selectivity to Primary Amines and Secondary Amines. IScience, 2018, 8, 61-73.	1.9	43
13	A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Research, 2022, 15, 965-971.	5.8	41
14	Two dimensional Rh/Fe3O4/g-C3N4-N enabled hydrazine mediated catalytic transfer hydrogenation of nitroaromatics: A predictable catalyst model with adjoining Rh. Journal of Catalysis, 2018, 368, 20-30.	3.1	40
15	A novel solvent-free strategy for the synthesis of bismuth oxyhalides. Journal of Materials Chemistry A, 2018, 6, 13005-13011.	5.2	38
16	Dual Enzyme Mimics Based on Metal–Ligand Cross‣inking Strategy for Accelerating Ascorbate Oxidation and Enhancing Tumor Therapy. Advanced Functional Materials, 2021, 31, 2103581.	7.8	37
17	A ppm level Rh-based composite as an ecofriendly catalyst for transfer hydrogenation of nitriles: triple guarantee of selectivity for primary amines. Green Chemistry, 2019, 21, 1390-1395.	4.6	35
18	Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nature Protocols, 2021, 16, 937-964.	5.5	35

Yongjian Ai

#	Article	IF	CITATIONS
19	Microwell Confined Iron Oxide Nanoparticles in Honeycomblike Carbon Spheres for the Adsorption of Sb(III) and Sequential Utilization as a Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 12925-12934.	3.2	33
20	Nickelâ€Catalyzed Synthesis of 3D Edgeâ€Curled Graphene for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1904645.	7.8	32
21	Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Research, 2021, 14, 2644-2653.	5.8	32
22	Ultimate Resourcization of Waste: Crab Shell-Derived Biochar for Antimony Removal and Sequential Utilization as an Anode for a Li-Ion Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 8813-8823.	3.2	28
23	Recyclable Acid–Base Bifunctional Core–Shell–Shell Nanosphere Catalyzed Synthesis of 5â€Arylâ€1 <i>H</i> â€1,2,3â€triazoles through the "Oneâ€Pot―Cyclization of Aldehydes, Nitromethane, and Sodium Azide. ChemCatChem, 2017, 9, 3131-3137.	1.8	25
24	Noncovalently functionalized carbon nanotubes immobilized Fe–Bi bimetallic oxides as a heterogeneous nanocatalyst for reduction of nitroaromatics. Nano Structures Nano Objects, 2017, 10, 116-124.	1.9	25
25	Metallo-supramolecular polymer engineered porous carbon framework encapsulated stable ultra-small nanoparticles: a general approach to construct highly dispersed catalysts. Journal of Materials Chemistry A, 2018, 6, 16680-16689.	5.2	25
26	Ultrafine FeCu Alloy Nanoparticles Magnetically Immobilized in Amineâ€Rich Silica Spheres for Dehalogenationâ€Proof Hydrogenation of Nitroarenes. Chemistry - A European Journal, 2018, 24, 14418-14424.	1.7	24
27	Rh Catalyzed Selective Hydrogenation of Nitroarenes under Mild Conditions: Understanding the Functional Groups Attached to the Nanoparticles. ChemCatChem, 2019, 11, 5543-5552.	1.8	22
28	Recycling Antimony(III) by Magnetic Carbon Nanospheres: Turning Waste to Recoverable Catalytic for Synthesis of Esters and Triazoles. ACS Sustainable Chemistry and Engineering, 2020, 8, 469-477.	3.2	22
29	Ternary NiFeMnOx compounds for adsorption of antimony and subsequent application in energy storage to avoid secondary pollution. Separation and Purification Technology, 2021, 276, 119237.	3.9	22
30	A flow strategy for the rapid, safe and scalable synthesis of N-H 1, 2, 3-triazoles via acetic acid mediated cycloaddition between nitroalkene and NaN3. Tetrahedron, 2017, 73, 3959-3965.	1.0	21
31	3D Porous Carbon Framework Stabilized Ultraâ€Uniform Nano γâ€Fe ₂ O ₃ : A Useful Catalyst System. Chemistry - an Asian Journal, 2018, 13, 89-98.	1.7	21
32	Stretchable and Anisotropic Conductive Composite Hydrogel as Therapeutic Cardiac Patches. , 2021, 3, 1238-1248.		21
33	Insight into the selectivity of nano-catalytic nitroarenes reduction over other active groups by exploring hydrogen sources and metal components. Applied Catalysis A: General, 2021, 626, 118339.	2.2	20
34	Facile and Large‣cale Fabrication of Subâ€3â€nm PtNi Nanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for the Hydrogen Evolution Reaction and Hydrogenation. Chemistry - A European Journal, 2019, 25, 7191-7200.	1.7	18
35	Oligo-layer graphene stabilized fully exposed Fe-sites for ultra-sensitivity electrochemical detection of dopamine. Biosensors and Bioelectronics, 2022, 211, 114367.	5.3	18
36	Hydroxyl Assisted Rhodium Catalyst Supported on Goethite Nanoflower for Chemoselective Catalytic Transfer Hydrogenation of Fully Converted Nitrostyrenes. Advanced Synthesis and Catalysis, 2019, 361, 3146-3154.	2.1	16

Yongjian Ai

#	Article	IF	CITATIONS
37	Tunable Assembly of Organic–Inorganic Molecules into Hierarchical Superstructures as Ligase Mimics for Enhancing Tumor Photothermal Therapy. Small, 2022, 18, e2105304.	5.2	15
38	Encapsulating Electron-Rich Pd NPs with Lewis Acidic MOF: Reconciling the Electron-Preference Conflict of the Catalyst for Cascade Condensation via Nitro Reduction. ACS Applied Materials & Interfaces, 2022, 14, 7949-7961.	4.0	15
39	Dehydration-triggered shape morphing based on asymmetric bubble hydrogel microfibers. Soft Matter, 2018, 14, 6623-6626.	1.2	13
40	Moderate Activity from Trace Palladium Alloyed with Copper for the Chemoselective Hydrogenation of –CN and –NO ₂ with HCOOH. ChemistrySelect, 2019, 4, 7346-7350.	0.7	13
41	Nitrite-Responsive Hydrogel: Smart Drug Release Depending on the Severity of the Nitric Oxide-Related Disease. ACS Applied Materials & Interfaces, 2020, 12, 51185-51197.	4.0	12
42	Metal–Organic Frameworkâ€Encapsulated CoCu Nanoparticles for the Selective Transfer Hydrogenation of Nitrobenzaldehydes: Engineering Active Armor by the Halfâ€Way Injection Method. Chemistry - A European Journal, 2021, 27, 1080-1087.	1.7	10
43	Cp2ZrCl2-catalyzed synthesis of 2-aminovinyl benzimidazoles under microwave conditions. Chinese Chemical Letters, 2015, 26, 297-300.	4.8	9
44	A Predictable Catalyst Model for Highly Active and Selective Catalysis of Hydrogenation of Nitroarenes: Comprehension of Various Precious Metal Nanoparticles. ChemistrySelect, 2019, 4, 8960-8967.	0.7	9
45	Immobilizing Multifunctional Fe ₂ O ₃ â€5nO ₂ Nanoparticles to Carbon Nanospheres: An Extremely Active and Selective Catalyst for Hydrogen Transfer Reaction. ChemistrySelect, 2017, 2, 8288-8295.	0.7	8
46	Iron Catalyzed Cascade Construction of Molybdenum Carbide Heterointerfaces for Understanding Hydrogen Evolution. Small, 2022, 18, e2200439.	5.2	8
47	Selective Synthesis of Symmetrical Secondary Amines from Nitriles with a Ptâ"CuFe/Fe ₃ O ₄ Catalyst and Ammonia Borane as Hydrogen Donor. ChemPlusChem, 2020, 85, 1783-1788.	1.3	7
48	Recovery of antimony using biological waste and stepwise resourcization as catalysts for both polyesterification and transfer hydrogenation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128119.	2.3	7
49	Rhodium Nanoparticles Loaded on Carbonâ€Wrapped Fe ₃ O ₄ Sphere: an Efficient, Stable and Magnetically Recoverable Catalyst for the Catalytic Transfer Hydrogenation of Nitroarenes in Water. ChemistrySelect, 2017, 2, 6762-6766.	0.7	5
50	Reusable rhodium catalyst for the selective transvinylation of sp 2 -C linked carboxylic acid. Tetrahedron Letters, 2018, 59, 3279-3282.	0.7	5
51	Inâ€situ Construction of Graphiteâ€Supported Magnetic Carbocatalysts from a Metalloâ€Supramolecular Polymer: High Performance for Catalytic Transfer Hydrogenation. ChemNanoMat, 2020, 6, 629-638.	1.5	4
52	Efficient water-mediated synthesis of bismuth oxyiodide with several distinct morphologies. CrystEngComm, 2020, 22, 1754-1761.	1.3	4
53	Cobalt-promoted fabrication of 3D carbon with a nanotube-sheet mutual support structure: scalable preparation of a high-performance anode material for Li-ion batteries. Nanotechnology, 2020, 31, 085402.	1.3	3
54	Copper promoted catalytic cleavage of esters under nearly neutral conditions in the presence of NaN3. Tetrahedron Letters, 2015, 56, 2678-2683.	0.7	2

#	Article	IF	CITATIONS
55	An Asymmetrical Cyanine Dye Nanoparticles for Small Vessel Photoacoustic Imaging <i>In Vivo</i> . ChemNanoMat, 2018, 4, 626-630.	1.5	2