
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8625591/publications.pdf Version: 2024-02-01

Μερλι Μιιςτλελ

#	Article	IF	CITATIONS
1	A novel formulation and analysis for heat transfer in von Kármán flow involving viscoelastic fluid: OHAM solutions. Journal of Thermal Analysis and Calorimetry, 2022, 147, 477-488.	3.6	7
2	Rotationally symmetric flow of Cu-Al ₂ O ₃ /water hybrid nanofluid over a heated porous boundary. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 1524-1534.	2.1	3
3	Rotationally symmetric flow of Reiner-Rivlin fluid over a heated porous wall using numerical approach. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 2803-2814.	2.1	6
4	A comparative study of different viscosity models for unsteady flow over a decelerating rotating disk with variable physical properties. International Communications in Heat and Mass Transfer, 2022, 135, 106155.	5.6	9
5	A study of heat transfer and entropy generation in von Kármán flow of Reiner-Rivlin fluid due to a stretchable disk. Ain Shams Engineering Journal, 2021, 12, 875-883.	6.1	30
6	A study of elastico-viscous fluid flow by a revolving disk with heat dissipation effects using HAM based package BVPh 2.0. Scientific Reports, 2021, 11, 4514.	3.3	11
7	Bödewadt flow of Bingham fluids over a non-isothermal permeable disk with viscous dissipation effects. AEJ - Alexandria Engineering Journal, 2021, 60, 2857-2864.	6.4	9
8	Steadily revolving flow of Sisko fluid along a stretchable boundary with non-linear radiation effects. Pramana - Journal of Physics, 2021, 95, 1.	1.8	4
9	Bödewadt flow of Bingham fluid over a permeable disk with variable fluid properties: A numerical study. International Communications in Heat and Mass Transfer, 2021, 127, 105540.	5.6	9
10	Second law analysis of heat transfer in swirling flow of Bingham fluid by a rotating disk subjected to suction effect. Thermal Science, 2021, 25, 13-24.	1.1	10
11	Falkner-Skan flow of nanofluid past a static wedge with partial slip conditions using different models. International Communications in Heat and Mass Transfer, 2021, 129, 105690.	5.6	4
12	Numerical simulations of heat transfer around a circular cylinder immersed in a shear-thinning fluid obeying Cross model. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 123184.	2.6	26
13	Computational Analysis of Unsteady Swirling Flow Around a Decelerating Rotating Porous Disk in Nanofluid. Arabian Journal for Science and Engineering, 2020, 45, 1143-1154.	3.0	26
14	Modeling heat transfer in fluid flow near a decelerating rotating disk with variable fluid properties. International Communications in Heat and Mass Transfer, 2020, 116, 104673.	5.6	25
15	Dual solutions for fluid flow over a stretching/shrinking rotating disk subject to variable fluid properties. Physica A: Statistical Mechanics and Its Applications, 2020, 556, 124773.	2.6	26
16	A Novel Formulation for MHD Slip Flow of Elastico-Viscous Fluid Induced by Peristaltic Waves with Heat/Mass Transfer Effects. Arabian Journal for Science and Engineering, 2020, 45, 9213-9225.	3.0	13
17	A New Model and Analysis for Peristalsis of Carreau–Yasuda (CY) Nanofluid Subject to Wall Properties. Arabian Journal for Science and Engineering, 2020, 45, 5179-5190.	3.0	27
18	Numerical assessment of Bödewadt flow and heat transfer over a permeable disk with variable fluid properties. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122138.	2.6	20

#	Article	IF	CITATIONS
19	A Novel Approach to Develop a Closed-Form Solution for MHD Flow Induced by a Rotating Disk. IEEE Access, 2019, 7, 124410-124416.	4.2	1
20	Bödewadt Flow Over a Permeable Disk with Homogeneous-Heterogeneous Reactions: A Numerical Study. Applied Sciences (Switzerland), 2019, 9, 4046.	2.5	11
21	Assisting or opposing MHD flow of cross fluid along a non-isothermal surface with variable thermal conductivity. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 4980-4989.	2.1	4
22	Numerical study of Bödewadt slip flow on a convectively heated porous disk in a nanofluid. Physica Scripta, 2019, 94, 095701.	2.5	9
23	Pressure-Driven Flow of Cross Fluid Along a Stationary Plate Subject to Binary Chemical Reaction and Arrhenius Activation Energy. Arabian Journal for Science and Engineering, 2019, 44, 5647-5655.	3.0	13
24	Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface: A Numerical Study. Communications in Theoretical Physics, 2018, 69, 461.	2.5	1
25	Numerical Solutions for Radiative Heat Transfer in Ferrofluid Flow due to a Rotating Disk: Tiwari and Das Model. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19, 1-10.	1.0	19
26	Heat transfer in Oldroyd-B fluid flow due to an exponentially stretching wall utilizing Cattaneo–Christov heat flux model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	5
27	A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk. International Journal of Heat and Mass Transfer, 2018, 123, 979-987.	4.8	70
28	Rotating flow of viscoelastic fluid with nonlinear thermal radiation: a numerical study. Neural Computing and Applications, 2018, 29, 493-499.	5.6	26
29	Non-aligned MHD stagnation-point flow of upper-convected Maxwell fluid with nonlinear thermal radiation. Neural Computing and Applications, 2018, 30, 1549-1555.	5.6	3
30	A revised model to study the MHD nanofluid flow and heat transfer due to rotating disk: numerical solutions. Neural Computing and Applications, 2018, 30, 957-964.	5.6	22
31	Analytical and numerical approaches for Falkner–Skan flow of MHD Maxwell fluid using a non-Fourier heat flux model. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1539-1555.	2.8	4
32	Modeling MHD swirling flow due to rough rotating disk with non-linear radiation and chemically reactive solute. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2342-2356.	2.8	3
33	Entropy generation analysis for radiative heat transfer to Bödewadt slip flow subject to strong wall suction. European Journal of Mechanics, B/Fluids, 2018, 72, 179-188.	2.5	23
34	Buoyancy effects in stagnation-point flow of Maxwell fluid utilizing non-Fourier heat flux approach. PLoS ONE, 2018, 13, e0192685.	2.5	9
35	Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. International Journal of Heat and Mass Transfer, 2017, 108, 1340-1346.	4.8	192
36	Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno's model. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 221-234.	2.8	65

#	Article	IF	CITATIONS
37	MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. International Journal of Heat and Mass Transfer, 2017, 108, 1910-1916.	4.8	144
38	Numerical study for Bödewadt flow of water based nanofluid over a deformable disk: Buongiorno model. Indian Journal of Physics, 2017, 91, 527-533.	1.8	17
39	Slip effects on MHD boundary layer flow of Oldroyd-B fluid past a stretching sheet: An analytic solution. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 3389-3397.	1.6	6
40	Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: A numerical study. International Journal of Heat and Mass Transfer, 2017, 111, 827-835.	4.8	115
41	An analytical treatment for MHD mixed convection boundary layer flow of Oldroyd-B fluid utilizing non-Fourier heat flux model. International Journal of Heat and Mass Transfer, 2017, 113, 1012-1020.	4.8	27
42	Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk. Journal of Molecular Liquids, 2017, 234, 287-295.	4.9	33
43	Three-dimensional flow of Jeffrey fluid with Cattaneo–Christov heat flux: An application to non-Fourier heat flux theory. Chinese Journal of Physics, 2017, 55, 1067-1077.	3.9	18
44	Rotating flow of Oldroyd-B fluid over stretchable surface with Cattaneo – Christov heat flux. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2207-2222.	2.8	17
45	Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions. Results in Physics, 2017, 7, 3137-3144.	4.1	32
46	Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects. Results in Physics, 2017, 7, 2000-2011.	4.1	21
47	Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous-heterogeneous reactions. Results in Physics, 2017, 7, 3475-3481.	4.1	11
48	Buongiorno's model for fluid flow around a moving thin needle in a flowing nanofluid: A numerical study. Chinese Journal of Physics, 2017, 55, 1264-1274.	3.9	62
49	A non-Fourier heat flux approach to model MHD Oldroyd-B fluid flow due to bidirectional stretching surface. International Journal of Mechanical Sciences, 2017, 131-132, 146-154.	6.7	20
50	Nanofluid flow through a porous space with convective conditions and heterogeneous–homogeneous reactions. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 119-126.	5.3	42
51	Rotating flow of Maxwell fluid with variable thermal conductivity: An application to non-Fourier heat flux theory. International Journal of Heat and Mass Transfer, 2017, 106, 142-148.	4.8	59
52	Numerical Study of MHD Viscoelastic Fluid Flow with Binary Chemical Reaction and Arrhenius Activation Energy. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	10
53	A revised model to study the rotating flow of nanofluid over an exponentially deforming sheet: Numerical solutions. Journal of Molecular Liquids, 2017, 225, 320-327.	4.9	14
54	Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation. PLoS ONE, 2016, 11, e0149304.	2.5	69

#	Article	IF	CITATIONS
55	Analytical study of Cattaneo–Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chinese Physics B, 2016, 25, 014701.	1.4	59
56	Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: A numerical study. Results in Physics, 2016, 6, 805-810.	4.1	49
57	Numerical solution for Sakiadis flow of upper-convected Maxwell fluid using Cattaneo-Christov heat flux model. AIP Advances, 2016, 6, .	1.3	32
58	A model for an application to biomedical engineering through nanoparticles. International Journal of Heat and Mass Transfer, 2016, 101, 112-120.	4.8	22
59	Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet. Journal of Molecular Liquids, 2016, 220, 635-641.	4.9	59
60	Effects of the Cattaneo–Christov heat flux model on peristalsis. Engineering Applications of Computational Fluid Mechanics, 2016, 10, 373-383.	3.1	11
61	Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results in Physics, 2016, 6, 627-633.	4.1	186
62	Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine. Computer Methods and Programs in Biomedicine, 2016, 135, 89-100.	4.7	36
63	Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet. Advanced Powder Technology, 2016, 27, 2223-2231.	4.1	37
64	On magnetohydrodynamic flow of second grade nanofluid over a convectively heated nonlinear stretching surface. Advanced Powder Technology, 2016, 27, 1992-2004.	4.1	40
65	Peristaltic transport of Powell–Eyring fluid in a curved channel with heat/mass transfer and wall properties. International Journal of Heat and Mass Transfer, 2016, 101, 156-165.	4.8	60
66	Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet. Journal of Magnetism and Magnetic Materials, 2016, 407, 69-74.	2.3	61
67	On squeezing flow of nanofluid in the presence of magnetic field effects. Journal of Molecular Liquids, 2016, 213, 179-185.	4.9	109
68	Velocity and thermal slip effects on peristaltic motion of Walters-B fluid. International Journal of Heat and Mass Transfer, 2016, 96, 210-217.	4.8	43
69	On three-dimensional flow of nanofluids past a convectively heated deformable surface: A numerical study. International Journal of Heat and Mass Transfer, 2016, 94, 49-55.	4.8	18
70	A numerical study for three-dimensional viscoelastic flow inspired by non-linear radiative heat flux. International Journal of Non-Linear Mechanics, 2016, 79, 83-87.	2.6	17
71	Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet. PLoS ONE, 2016, 11, e0153481.	2.5	31
72	A Comparative Study for Flow of Viscoelastic Fluids with Cattaneo-Christov Heat Flux. PLoS ONE, 2016, 11, e0155185.	2.5	42

#	Article	IF	CITATIONS
73	Viscoelastic Flow and Heat Transfer over a Non-Linearly Stretching Sheet: OHAM Solution. Journal of Applied Fluid Mechanics, 2016, 9, 1321-1328.	0.2	14
74	Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Advances, 2015, 5, .	1.3	212
75	Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions. AIP Advances, 2015, 5, .	1.3	34
76	Three-Dimensional Flow of Nanofluid Induced by an Exponentially Stretching Sheet: An Application to Solar Energy. PLoS ONE, 2015, 10, e0116603.	2.5	55
77	On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Applied Mathematics and Computation, 2015, 263, 378-391.	2.2	68
78	Model to study the non-linear radiation heat transfer in the stagnation-point flow of power-law fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1107-1119.	2.8	17
79	Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet. International Journal of Non-Linear Mechanics, 2015, 71, 22-29.	2.6	91
80	On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. Journal of Molecular Liquids, 2015, 211, 119-125.	4.9	101
81	Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy. International Journal of Heat and Mass Transfer, 2015, 86, 158-164.	4.8	128
82	Numerical study on three-dimensional flow of nanofluid past a convectively heated exponentially stretching sheet. Canadian Journal of Physics, 2015, 93, 1131-1137.	1.1	10
83	Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects. AIP Advances, 2015, 5, .	1.3	113
84	Simulations for Maxwell fluid flow past a convectively heated exponentially stretching sheet with nanoparticles. AIP Advances, 2015, 5, 037133.	1.3	52
85	PERISTALTIC FLOW OF COUPLE-STRESS FLUID WITH HEAT AND MASS TRANSFER: AN APPLICATION IN BIOMEDICINE. Journal of Mechanics in Medicine and Biology, 2015, 15, 1550042.	0.7	15
86	Model for natural convective flow of visco-elastic nanofluid past an isothermal vertical plate. European Physical Journal Plus, 2015, 130, 1.	2.6	6
87	MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet. Computers and Fluids, 2015, 108, 179-185.	2.5	86
88	Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet. Journal of the Taiwan Institute of Chemical Engineers, 2015, 47, 43-49.	5.3	41
89	Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface. PLoS ONE, 2015, 10, e0137363.	2.5	80
90	Radiation Effects on the Flow of Powell-Eyring Fluid Past an Unsteady Inclined Stretching Sheet with Non-Uniform Heat Source/Sink. PLoS ONE, 2014, 9, e103214.	2.5	52

#	Article	IF	CITATIONS
91	On Three-Dimensional Flow and Heat Transfer over a Non-Linearly Stretching Sheet: Analytical and Numerical Solutions. PLoS ONE, 2014, 9, e107287.	2.5	64
92	Effect of Slip on Peristaltic Flow of Powell-Eyring Fluid in a Symmetric Channel. Applied Bionics and Biomechanics, 2014, 11, 69-79.	1.1	13
93	Stagnation-point flow of Jeffrey fluid with melting heat transfer and Soret and Dufour effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 402-418.	2.8	23
94	Unsteady flow and heat transfer of Jeffrey fluid over a stretching sheet. Thermal Science, 2014, 18, 1069-1078.	1.1	33
95	Chapter 6: Homotopy Analysis Method for Some Boundary Layer Flows of Nanofluids. , 2014, , 259-290.		Ο
96	Nonlinear Radiation Heat Transfer Effects in the Natural Convective Boundary Layer Flow of Nanofluid Past a Vertical Plate: A Numerical Study. PLoS ONE, 2014, 9, e103946.	2.5	65
97	On the Numerical Solution of the Nonlinear Radiation Heat Transfer Problem in a Three-Dimensional Flow. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 705-713.	1.5	15
98	Peristaltic Motion of Johnson-Segalman Fluid in a Curved Channel with Slip Conditions. PLoS ONE, 2014, 9, e114168.	2.5	16
99	Analytic and numeric solutions for stagnation-point flow with melting, thermal-diffusion and diffusion-thermo effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 438-454.	2.8	8
100	MHD Boundary Layer Flow of Second-Grade Nanofluid over a Stretching Sheet with Convective Boundary Conditions. Journal of Aerospace Engineering, 2014, 27, .	1.4	26
101	On model for three-dimensional flow of nanofluid: An application to solar energy. Journal of Molecular Liquids, 2014, 194, 41-47.	4.9	101
102	Influence of induced magnetic field on the peristaltic flow of nanofluid. Meccanica, 2014, 49, 521-534.	2.0	32
103	Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1176-1183.	5.3	124
104	Peristaltic motion of third grade fluid in curved channel. Applied Mathematics and Mechanics (English Edition), 2014, 35, 73-84.	3.6	26
105	Boundary layer flow of Carreau fluid over a convectively heated stretching sheet. Applied Mathematics and Computation, 2014, 246, 12-22.	2.2	78
106	Peristaltic Motion of Nanofluid in a Curved Channel. Journal of Heat Transfer, 2014, 136, .	2.1	22
107	Effects of Thermal Radiation on the Stagnation-Point Flow of Upper-Convected Maxwell Fluid over a Stretching Sheet. Journal of Aerospace Engineering, 2014, 27, .	1.4	34
108	Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 308-316.	5.3	81

#	Article	IF	CITATIONS
109	Stagnation-Point Flow of Nanofluid Through Different Utilization of Thermal Radiation Effect. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1107-1115.	0.4	1
110	Slip Effects on the Peristaltic Motion of Nanofluid in a Channel With Wall Properties. Journal of Heat Transfer, 2013, 135, .	2.1	33
111	Stagnation-point flow of couple stress fluid with melting heat transfer. Applied Mathematics and Mechanics (English Edition), 2013, 34, 167-176.	3.6	50
112	Unsteady Boundary Layer Flow of Nanofluid Past an Impulsively Stretching Sheet. Journal of Mechanics, 2013, 29, 423-432.	1.4	45
113	Melting heat transfer in the stagnation-point flow of third grade fluid past a stretching sheet with viscous dissipation. Thermal Science, 2013, 17, 865-875.	1.1	22
114	Exponentially Stretching Sheet in a Powell–Eyring Fluid: Numerical and Series Solutions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2013, 68, 791-798.	1.5	23
115	Numerical and Series Solutions for Stagnation-Point Flow of Nanofluid over an Exponentially Stretching Sheet. PLoS ONE, 2013, 8, e61859.	2.5	48
116	Exact Solutions for the Magnetohydrodynamic Flow of a Jeffrey Fluid with Convective Boundary Conditions and Chemical Reaction. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2012, 67, 517-524.	1.5	24
117	EFFECT OF WALL PROPERTIES ON THE PERISTALTIC FLOW OF A THIRD GRADE FLUID IN A CURVED CHANNEL. Journal of Mechanics in Medicine and Biology, 2012, 12, 1250067.	0.7	22
118	Stagnation-Point Flow and Heat Transfer of a Casson Fluid towards a Stretching Sheet. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2012, 67, 70-76.	1.5	85
119	Flow of a Second Grade Fluid over a Stretching Surface with Newtonian Heating. Journal of Mechanics, 2012, 28, 209-216.	1.4	39
120	Influence of Melting Heat Transfer in the Stagnation-Point Flow of a Jeffrey Fluid in the Presence of Viscous Dissipation. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	2.2	27
121	Axisymmetric Flow of a Nanofluid Over a Radially Stretching Sheet with Convective Boundary Conditions. Current Nanoscience, 2012, 8, 328-334.	1.2	22
122	On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica, 2012, 47, 1581-1589.	2.0	181
123	INFLUENCE OF HEAT TRANSFER IN THE SQUEEZING FLOW BETWEEN PARALLEL DISKS. Chemical Engineering Communications, 2012, 199, 1044-1062.	2.6	29
124	Momentum and heat transfer of an upper-convected Maxwell fluid over a moving surface with convective boundary conditions. Nuclear Engineering and Design, 2012, 252, 242-247.	1.7	36
125	MHD squeezing flow of secondâ€grade fluid between two parallel disks. International Journal for Numerical Methods in Fluids, 2012, 69, 399-410.	1.6	74
126	Influence of wall properties on the peristaltic flow of a nanofluid: Analytic and numerical solutions. International Journal of Heat and Mass Transfer, 2012, 55, 4871-4877.	4.8	137

#	Article	IF	CITATIONS
127	Melting heat transfer in the stagnationâ€point flow of an upperâ€convected Maxwell (UCM) fluid past a stretching sheet. International Journal for Numerical Methods in Fluids, 2012, 68, 233-243.	1.6	60
128	Stagnation-point flow of a nanofluid towards a stretching sheet. International Journal of Heat and Mass Transfer, 2011, 54, 5588-5594.	4.8	279
129	Time-dependent three-dimensional flow and mass transfer of elastico-viscous fluid over unsteady stretching sheet. Applied Mathematics and Mechanics (English Edition), 2011, 32, 167-178.	3.6	19
130	Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transfer - Asian Research, 2011, 40, 563-576.	2.8	208
131	Boundary layer flow of an Oldroydâ€B fluid with convective boundary conditions. Heat Transfer - Asian Research, 2011, 40, 744-755.	2.8	7
132	Soret and Dufour Effects on the Stagnation-Point Flow of a Micropolar Fluid Toward a Stretching Sheet. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	1.5	14
133	Unsteady flow with heat and mass transfer of a third grade fluid over a stretching surface in the presence of chemical reaction. Nonlinear Analysis: Real World Applications, 2010, 11, 3186-3197.	1.7	93
134	Heat and mass transfer for Soret and Dufour's effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1183-1196.	3.3	167
135	Mixed Convection Boundary Layer Flow over a Stretching Surface Filled with a Maxwell Fluid in Presence of Soret and Dufour Effects. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 401-410.	1.5	27
136	Influence of Thermal Radiation on the Unsteady Mixed Convection Flow of a Jeffrey Fluid over a Stretching Sheet. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 711-719.	1.5	35
137	Influence of Thermal Radiation on Blasius Flow of a Second Grade Fluid. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 827-833.	1.5	20
138	A numerical study of rotationally symmetric nanofluid flow over a permeable surface using Buongiorno model. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892110732.	2.5	1
139	Aiding or opposing electro-osmotic flow of Carreau–Yasuda nanofluid induced by peristaltic waves using Buongiorno model. Waves in Random and Complex Media, 0, , 1-17.	2.7	7
140	Numerical simulations for heat transfer in peristalsis of Bingham fluid utilizing partial slip conditions. Waves in Random and Complex Media, 0, , 1-16.	2.7	4