Santosh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8625543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2022, 62, 1912-1935.	5.4	89
2	Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science and Technology, 2020, 97, 196-209.	7.8	463
3	Biodegradable Hybrid Nanocomposite of Chitosan/Gelatin and Green Synthesized Zinc Oxide Nanoparticles for Food Packaging. Foods, 2020, 9, 1143.	1.9	96
4	Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. Applied Sciences (Switzerland), 2019, 9, 2409.	1.3	113
5	Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon, 2019, 5, e01867.	1.4	143
6	Fruit extract capped colloidal silver nanoparticles and their application in reduction of methylene blue dye. Biocatalysis and Biotransformation, 2019, 37, 183-189.	1.1	18
7	Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packaging and Shelf Life, 2018, 16, 178-184.	3.3	247
8	Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging. Food Packaging and Shelf Life, 2018, 17, 99-106.	3.3	63
9	Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Materials Science and Engineering C, 2018, 91, 743-753.	3.8	75
10	Plant latex capped colloidal silver nanoparticles: A potent anti-biofilm and fungicidal formulation. Journal of Molecular Liquids, 2017, 230, 705-713.	2.3	26
11	A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustainable Environment Research, 2017, 27, 245-250.	2.1	205
12	One pot phytosynthesis of gold nanoparticles using aqueous extract of elephant apple- an eco-friendly approach. Oriental Pharmacy and Experimental Medicine, 2017, 17, 285-289.	1.2	2
13	Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. LWT - Food Science and Technology, 2017, 75, 293-300.	2.5	41
14	Antimicrobial activity of green silver nanoparticles produced using aqueous leaf extract of Hydrocotyle rotundifolia. Oriental Pharmacy and Experimental Medicine, 2016, 16, 195-201.	1.2	17
15	Lippia javanica: a cheap natural source for the synthesis of antibacterial silver nanocolloid. Applied Nanoscience (Switzerland), 2016, 6, 1001-1007.	1.6	15
16	Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. Journal of Industrial and Engineering Chemistry, 2015, 26, 73-80.	2.9	88
17	Mechanistic study of antibacterial activity of biologically synthesized silver nanocolloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 449, 82-86.	2.3	47